Poisson process and sharp constants in $L^p$ and Schauder estimates for a class of degenerate Kolmogorov operators

IF 0.7 3区 数学 Q2 MATHEMATICS
L. Marino, S. Menozzi, E. Priola
{"title":"Poisson process and sharp constants in $L^p$ and Schauder estimates for a class of degenerate Kolmogorov operators","authors":"L. Marino, S. Menozzi, E. Priola","doi":"10.4064/sm210819-13-4","DOIUrl":null,"url":null,"abstract":"We consider a possibly degenerate Kolmogorov-Ornstein-Uhlenbeck operator of the form L = Tr(BD2) + 〈Az, D〉, where A, B are N × N matrices, z ∈ RN , N ≥ 1, which satisfy the Kalman condition which is equivalent to the hypoellipticity condition. We prove the following stability result: the Schauder and Sobolev estimates associated with the corresponding parabolic Cauchy problem remain valid, with the same constant, for the parabolic Cauchy problem associated with a second order perturbation of L, namely for L + Tr(S(t)D2) where S(t) is a non-negative definite N × N matrix depending continuously on t ∈ [0, T ]. Our approach relies on the perturbative technique based on the Poisson process introduced in [15].","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm210819-13-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a possibly degenerate Kolmogorov-Ornstein-Uhlenbeck operator of the form L = Tr(BD2) + 〈Az, D〉, where A, B are N × N matrices, z ∈ RN , N ≥ 1, which satisfy the Kalman condition which is equivalent to the hypoellipticity condition. We prove the following stability result: the Schauder and Sobolev estimates associated with the corresponding parabolic Cauchy problem remain valid, with the same constant, for the parabolic Cauchy problem associated with a second order perturbation of L, namely for L + Tr(S(t)D2) where S(t) is a non-negative definite N × N matrix depending continuously on t ∈ [0, T ]. Our approach relies on the perturbative technique based on the Poisson process introduced in [15].
一类退化Kolmogorov算子在$L^p$和Schauder估计中的Poisson过程和尖锐常数
我们考虑一个形式为L=Tr(BD2)+〈Az,D〉的可能退化Kolmogorov-Ornstein-Uhlenbeck算子,其中a,B是N×N矩阵,z∈RN,N≥1,它们满足Kalman条件,该条件等价于亚椭圆度条件。我们证明了以下稳定性结果:对于与L的二阶扰动相关的抛物型Cauchy问题,即对于L+Tr(S(t)D2),与相应的抛物型Couchy问题相关的Schauder和Sobolev估计在相同的常数下仍然有效,其中S(t)是连续依赖于t∈[0,t]的非负定N×N矩阵。我们的方法依赖于[15]中引入的基于泊松过程的微扰技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信