Bing Liu, Yansheng Gao, Hai Li, Zhaohao Zhong, Hongwei Zhao
{"title":"Lite-weight semantic segmentation with AG self-attention","authors":"Bing Liu, Yansheng Gao, Hai Li, Zhaohao Zhong, Hongwei Zhao","doi":"10.1049/cvi2.12225","DOIUrl":null,"url":null,"abstract":"<p>Due to the large computational and GPUs memory cost of semantic segmentation, some works focus on designing a lite weight model to achieve a good trade-off between computational cost and accuracy. A common method is to combined CNN and vision transformer. However, these methods ignore the contextual information of multi receptive fields. And existing methods often fail to inject detailed information losses in the downsampling of multi-scale feature. To fix these issues, we propose AG Self-Attention, which is Enhanced Atrous Self-Attention (EASA), and Gate Attention. AG Self-Attention adds the contextual information of multi receptive fields into the global semantic feature. Specifically, the Enhanced Atrous Self-Attention uses weight shared atrous convolution with different atrous rates to get the contextual information under the specific different receptive fields. Gate Attention introduces gating mechanism to inject detailed information into the global semantic feature and filter detailed information by producing “fusion” gate and “update” gate. In order to prove our insight. We conduct numerous experiments in common semantic segmentation datasets, consisting of ADE20 K, COCO-stuff, PASCAL Context, Cityscapes, to show that our method achieves state-of-the-art performance and achieve a good trade-off between computational cost and accuracy.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 1","pages":"72-83"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12225","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the large computational and GPUs memory cost of semantic segmentation, some works focus on designing a lite weight model to achieve a good trade-off between computational cost and accuracy. A common method is to combined CNN and vision transformer. However, these methods ignore the contextual information of multi receptive fields. And existing methods often fail to inject detailed information losses in the downsampling of multi-scale feature. To fix these issues, we propose AG Self-Attention, which is Enhanced Atrous Self-Attention (EASA), and Gate Attention. AG Self-Attention adds the contextual information of multi receptive fields into the global semantic feature. Specifically, the Enhanced Atrous Self-Attention uses weight shared atrous convolution with different atrous rates to get the contextual information under the specific different receptive fields. Gate Attention introduces gating mechanism to inject detailed information into the global semantic feature and filter detailed information by producing “fusion” gate and “update” gate. In order to prove our insight. We conduct numerous experiments in common semantic segmentation datasets, consisting of ADE20 K, COCO-stuff, PASCAL Context, Cityscapes, to show that our method achieves state-of-the-art performance and achieve a good trade-off between computational cost and accuracy.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf