Analisis Unjuk Kerja K-Nearest Neighbour untuk Klasifikasi Citra Aksara Bali Tulis Tangan

Anastasia Rita Widiarti, Hari Suparwito
{"title":"Analisis Unjuk Kerja K-Nearest Neighbour untuk Klasifikasi Citra Aksara Bali Tulis Tangan","authors":"Anastasia Rita Widiarti, Hari Suparwito","doi":"10.22146/ijeis.67796","DOIUrl":null,"url":null,"abstract":" A lack of philologists and the vulnerability of palm leaf material have become triggers for the scripting automation or transliteration of Balinese script images on computer-assisted palm leaves. One possibility to solve this problem is to create a transliteration machine. We proposed a machine learning technique using the k-NN algorithm to create a transliteration of Balinese script images. The benefit of the kNN algorithm is simply working by matching the similarity of new data to the nearest test data.   Instead of focusing on the classification technique, the study approaches also analyze the two previous processes: the first process is an image preparation process consisting of binarization, cutting the blanks, equalizing size, and thinning. The second is a feature extraction process using the character intensity algorithm. Our experiment employed 18 classes representing 18 Balinese characters. The optimal accuracy using a 3-fold cross-validation method to 1001 image data yields an average of accuracy is 84.746%. Although the image data used is handwritten, however, kNN algorithm performed classification well using an extensive training dataset. For that reason, the kNN algorithm could be potential for Balinese script images transliteration.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijeis.67796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

 A lack of philologists and the vulnerability of palm leaf material have become triggers for the scripting automation or transliteration of Balinese script images on computer-assisted palm leaves. One possibility to solve this problem is to create a transliteration machine. We proposed a machine learning technique using the k-NN algorithm to create a transliteration of Balinese script images. The benefit of the kNN algorithm is simply working by matching the similarity of new data to the nearest test data.   Instead of focusing on the classification technique, the study approaches also analyze the two previous processes: the first process is an image preparation process consisting of binarization, cutting the blanks, equalizing size, and thinning. The second is a feature extraction process using the character intensity algorithm. Our experiment employed 18 classes representing 18 Balinese characters. The optimal accuracy using a 3-fold cross-validation method to 1001 image data yields an average of accuracy is 84.746%. Although the image data used is handwritten, however, kNN algorithm performed classification well using an extensive training dataset. For that reason, the kNN algorithm could be potential for Balinese script images transliteration.
手写体字符分类的K近邻工作指标分析
缺乏文字学家和棕榈叶材料的脆弱性已成为计算机辅助棕榈叶上巴厘岛文字图像脚本自动化或音译的诱因。解决这个问题的一种可能性是创建一个音译机器。我们提出了一种使用k-NN算法的机器学习技术来创建巴厘岛文字图像的音译。kNN算法的好处是通过将新数据的相似性与最近的测试数据进行匹配来简单地工作。除了关注分类技术,研究方法还分析了之前的两个过程:第一个过程是图像准备过程,包括二值化、切割毛坯、均衡尺寸和细化。第二个是使用字符强度算法的特征提取过程。我们的实验使用了18个班,代表18个巴厘岛字符。使用3倍交叉验证方法对1001个图像数据的最佳准确度产生的平均准确度为84.746%。尽管所使用的图像数据是手写的,但kNN算法使用广泛的训练数据集进行了良好的分类。因此,kNN算法有可能用于巴厘岛文字图像的音译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信