Dimension reduction with expectation of conditional difference measure

IF 0.7 Q3 STATISTICS & PROBABILITY
Wenhui Sheng, Qingcong Yuan
{"title":"Dimension reduction with expectation of conditional difference measure","authors":"Wenhui Sheng, Qingcong Yuan","doi":"10.1080/24754269.2023.2182136","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a flexible model-free approach to sufficient dimension reduction analysis using the expectation of conditional difference measure. Without any strict conditions, such as linearity condition or constant covariance condition, the method estimates the central subspace exhaustively and efficiently under linear or nonlinear relationships between response and predictors. The method is especially meaningful when the response is categorical. We also studied the -consistency and asymptotic normality of the estimate. The efficacy of our method is demonstrated through both simulations and a real data analysis.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"188 - 201"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2023.2182136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we introduce a flexible model-free approach to sufficient dimension reduction analysis using the expectation of conditional difference measure. Without any strict conditions, such as linearity condition or constant covariance condition, the method estimates the central subspace exhaustively and efficiently under linear or nonlinear relationships between response and predictors. The method is especially meaningful when the response is categorical. We also studied the -consistency and asymptotic normality of the estimate. The efficacy of our method is demonstrated through both simulations and a real data analysis.
条件差测度期望值降维
在本文中,我们引入了一种灵活的无模型方法,利用条件差分测度的期望进行充分降维分析。在没有任何严格条件(如线性条件或常协方差条件)的情况下,该方法在响应和预测因子之间的线性或非线性关系下详尽有效地估计中心子空间。当反应是明确的时,这种方法尤其有意义。我们还研究了估计的-一致性和渐近正态性。我们的方法的有效性通过模拟和实际数据分析得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信