On new universal realizability criteria

IF 0.8 Q2 MATHEMATICS
Luis Arrieta, R. Soto
{"title":"On new universal realizability criteria","authors":"Luis Arrieta, R. Soto","doi":"10.1515/spma-2022-0177","DOIUrl":null,"url":null,"abstract":"Abstract A list Λ = { λ 1 , λ 2 , … , λ n } \\Lambda =\\left\\{{\\lambda }_{1},{\\lambda }_{2},\\ldots ,{\\lambda }_{n}\\right\\} of complex numbers is said to be realizable if it is the spectrum of an entrywise nonnegative matrix and is said to be universally realizable (UR), if it is realizable for each possible Jordan canonical form allowed by Λ \\Lambda . In 1981, Minc proved that if Λ \\Lambda is diagonalizably positively realizable, then Λ \\Lambda is UR [Proc. Amer. Math. Society 83 (1981), 665–669]. The question whether this result holds for nonnegative realizations was open for almost 40 years. Recently, two extensions of Mins’s result have been obtained by Soto et al. [Spec. Matrices 6 (2018), 301–309], [Linear Algebra Appl. 587 (2020), 302–313]. In this work, we exploit these extensions to generate new universal realizability criteria. Moreover, we also prove that under certain conditions, the union of two lists UR is also UR, and for certain criteria, if Λ \\Lambda is UR, then for t ≥ 0 t\\ge 0 , Λ t = { λ 1 + t , λ 2 ± t , λ 3 , … , λ n } {\\Lambda }_{t}=\\left\\{{\\lambda }_{1}+t,{\\lambda }_{2}\\pm t,{\\lambda }_{3},\\ldots ,{\\lambda }_{n}\\right\\} is also UR.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A list Λ = { λ 1 , λ 2 , … , λ n } \Lambda =\left\{{\lambda }_{1},{\lambda }_{2},\ldots ,{\lambda }_{n}\right\} of complex numbers is said to be realizable if it is the spectrum of an entrywise nonnegative matrix and is said to be universally realizable (UR), if it is realizable for each possible Jordan canonical form allowed by Λ \Lambda . In 1981, Minc proved that if Λ \Lambda is diagonalizably positively realizable, then Λ \Lambda is UR [Proc. Amer. Math. Society 83 (1981), 665–669]. The question whether this result holds for nonnegative realizations was open for almost 40 years. Recently, two extensions of Mins’s result have been obtained by Soto et al. [Spec. Matrices 6 (2018), 301–309], [Linear Algebra Appl. 587 (2020), 302–313]. In this work, we exploit these extensions to generate new universal realizability criteria. Moreover, we also prove that under certain conditions, the union of two lists UR is also UR, and for certain criteria, if Λ \Lambda is UR, then for t ≥ 0 t\ge 0 , Λ t = { λ 1 + t , λ 2 ± t , λ 3 , … , λ n } {\Lambda }_{t}=\left\{{\lambda }_{1}+t,{\lambda }_{2}\pm t,{\lambda }_{3},\ldots ,{\lambda }_{n}\right\} is also UR.
关于新的普遍可实现性标准
摘要复数的列表∧={λ1,λ2,…,λn}\Lambda=\left\{λ}_{1},{λ}_{2},\ldots,{Lambda}_}n}\ right\}如果它是一个入口非负矩阵的谱,并且如果它对于∧\Lambda允许的每个可能的Jordan正则形式都是可实现的,则它被称为是可普遍实现的(UR)。1981年,Minc证明了如果∧\Lambda是可对角化正可实现的,那么∧\Lamda是UR[Proc.Amer.Math.Society 83(1981),665–669]。这个结果是否适用于非负实现的问题已经公开了近40年。最近,Soto等人获得了Mins结果的两个扩展。[Spec.Matries 6(2018),301–309],[Lineral Algebrage-Appl.587(2020),302–313]。在这项工作中,我们利用这些扩展来生成新的通用可实现性标准。此外,我们还证明了在某些条件下,两个列表UR的并集也是UR,并且对于某些标准,如果∧\Lambda是UR,那么对于t≥0t\ge0,∧t={λ1+t,λ2±t,λ3,…,λn}{\Lambda}_{t}=\left{\Lambda}_{1}+t,{\λ}_。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信