Filippo Giuliani, M. Guardia, Pau Martín, S. Pasquali
{"title":"Chaotic resonant dynamics and exchanges of energy in Hamiltonian PDEs","authors":"Filippo Giuliani, M. Guardia, Pau Martín, S. Pasquali","doi":"10.4171/rlm/931","DOIUrl":null,"url":null,"abstract":"The aim of this note is to present the recent results in [16] where we provide the existence of solutions of some nonlinear resonant PDEs on the 2-dimensional torus exchanging energy among Fourier modes in a \\emph{chaotic-like} way. We say that a transition of energy is \\emph{chaotic-like} if either the choice of activated modes or the time spent in each transfer can be chosen randomly. We consider the nonlinear cubic Wave, the Hartree and the nonlinear cubic Beam equations. The key point of the construction of the special solutions is the existence of heteroclinic connections between invariant objects and the construction of symbolic dynamics (a Smale horseshoe) for the Birkhoff Normal Form of those equations.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/931","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
The aim of this note is to present the recent results in [16] where we provide the existence of solutions of some nonlinear resonant PDEs on the 2-dimensional torus exchanging energy among Fourier modes in a \emph{chaotic-like} way. We say that a transition of energy is \emph{chaotic-like} if either the choice of activated modes or the time spent in each transfer can be chosen randomly. We consider the nonlinear cubic Wave, the Hartree and the nonlinear cubic Beam equations. The key point of the construction of the special solutions is the existence of heteroclinic connections between invariant objects and the construction of symbolic dynamics (a Smale horseshoe) for the Birkhoff Normal Form of those equations.
期刊介绍:
The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.