On clique values identities and mantel-type theorems

IF 0.6 Q3 MATHEMATICS
H. T. Faal
{"title":"On clique values identities and mantel-type theorems","authors":"H. T. Faal","doi":"10.22108/TOC.2020.119553.1680","DOIUrl":null,"url":null,"abstract":"‎In this paper‎, ‎we first extend the weighted handshaking‎ ‎lemma‎, ‎using a generalization of the concept of the degree of vertices to the values of graphs‎. ‎This edge-version of the weighted handshaking lemma yields an immediate generalization of the‎ ‎Mantel's classical result which asks for the maximum number of edges in triangle-free graphs‎ ‎to the class of $K_{4}$-free graphs‎. ‎Then‎, ‎by defining the concept of value‎ ‎for cliques (complete subgraphs) of higher orders‎, ‎we also‎ ‎extend the classical result of Mantel for any graph $G$‎. ‎We finally conclude our paper with a discussion‎ ‎about the possible future works‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"9 1","pages":"139-146"},"PeriodicalIF":0.6000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.119553.1680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

‎In this paper‎, ‎we first extend the weighted handshaking‎ ‎lemma‎, ‎using a generalization of the concept of the degree of vertices to the values of graphs‎. ‎This edge-version of the weighted handshaking lemma yields an immediate generalization of the‎ ‎Mantel's classical result which asks for the maximum number of edges in triangle-free graphs‎ ‎to the class of $K_{4}$-free graphs‎. ‎Then‎, ‎by defining the concept of value‎ ‎for cliques (complete subgraphs) of higher orders‎, ‎we also‎ ‎extend the classical result of Mantel for any graph $G$‎. ‎We finally conclude our paper with a discussion‎ ‎about the possible future works‎.
关于团值恒等式和曼特型定理
‎在本文中‎, ‎我们首先扩展了加权握手‎ ‎引理‎, ‎利用顶点度概念对图的值的推广‎. ‎加权握手引理的这个边缘版本产生了‎ ‎Mantel求无三角形图最大边数的经典结果‎ ‎到$K_{4}$自由图的类‎. ‎然后‎, ‎通过定义价值的概念‎ ‎对于高阶的群(完全子图)‎, ‎我们也‎ ‎对任意图$G推广Mantel的经典结果$‎. ‎我们最后以讨论结束了我们的论文‎ ‎关于未来可能的作品‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信