Hanger forces optimization of ground test device on deployable structure

Q1 Arts and Humanities
Fei Lin, Chuanzhi Chen, Jinhua Zhou, Y. Dai
{"title":"Hanger forces optimization of ground test device on deployable structure","authors":"Fei Lin, Chuanzhi Chen, Jinhua Zhou, Y. Dai","doi":"10.1177/09560599211005099","DOIUrl":null,"url":null,"abstract":"When using suspension method to simulate the microgravity environment, part of the hanger forces are used to offset the influence of gravitational field on the deployable structure, while the other part produces additional forces that affect the driving forces and precision of the deployable structure. In order to reduce the adverse effect of hanger forces, and avoid the construction of complex finite element theoretical model, an optimization method based on adaptive genetic algorithm with MATLAB and Nastran co-simulation is proposed. Then, the hanger forces are optimized, and the deployable structure deformation has been reduced 49%. It suggests that the adverse effect of hanger forces has been effectively reduced and the proposed optimization method works well.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":"36 1","pages":"127 - 136"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/09560599211005099","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09560599211005099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

Abstract

When using suspension method to simulate the microgravity environment, part of the hanger forces are used to offset the influence of gravitational field on the deployable structure, while the other part produces additional forces that affect the driving forces and precision of the deployable structure. In order to reduce the adverse effect of hanger forces, and avoid the construction of complex finite element theoretical model, an optimization method based on adaptive genetic algorithm with MATLAB and Nastran co-simulation is proposed. Then, the hanger forces are optimized, and the deployable structure deformation has been reduced 49%. It suggests that the adverse effect of hanger forces has been effectively reduced and the proposed optimization method works well.
可展开结构地面试验装置吊架力优化
采用悬架法模拟微重力环境时,一部分挂架力用来抵消重力场对可展开结构的影响,另一部分产生附加力,影响可展开结构的驱动力和精度。为了减少悬挂力的不利影响,避免建立复杂的有限元理论模型,提出了一种基于自适应遗传算法的MATLAB与Nastran联合仿真优化方法。然后对吊架受力进行优化,可展开结构的变形减小了49%。结果表明,该优化方法有效地减小了悬挂力的不利影响,效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Space Structures
International Journal of Space Structures Arts and Humanities-Conservation
CiteScore
2.00
自引率
0.00%
发文量
21
期刊介绍: The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信