Statistical analysis of conditionally binomial nonlinear regression time series with discrete regressors

IF 0.4 Q4 STATISTICS & PROBABILITY
Yuriy S. Kharin, V. Voloshko
{"title":"Statistical analysis of conditionally binomial nonlinear regression time series with discrete regressors","authors":"Yuriy S. Kharin, V. Voloshko","doi":"10.1090/tpms/1105","DOIUrl":null,"url":null,"abstract":"The model of conditionally binomial nonlinear regression time series with discrete regressors is considered. A new frequencies-based estimator (FBE) of explicit form is constructed for this model. FBE is shown to be consistent, asymptotically normal, asymptotically effective, and to have less restrictive uniqueness assumptions w. r. t. the classical MLE. A fast recursive algorithm is constructed for FBE re-computation under model extension. Asymptotically optimal Wald test and forecasting statistic based on FBE are developed. Computer experiments on simulated data are performed for FBE.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/tpms/1105","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

The model of conditionally binomial nonlinear regression time series with discrete regressors is considered. A new frequencies-based estimator (FBE) of explicit form is constructed for this model. FBE is shown to be consistent, asymptotically normal, asymptotically effective, and to have less restrictive uniqueness assumptions w. r. t. the classical MLE. A fast recursive algorithm is constructed for FBE re-computation under model extension. Asymptotically optimal Wald test and forecasting statistic based on FBE are developed. Computer experiments on simulated data are performed for FBE.
条件二项非线性回归时间序列的离散回归统计分析
考虑了具有离散回归器的条件二项非线性回归时间序列模型。为该模型构造了一种新的显式基于频率的估计器(FBE)。证明了FBE是一致的、渐近正态的、渐近有效的,并且与经典MLE相比具有较少的限制性唯一性假设。构造了一种快速递归算法,用于模型扩展下的FBE重计算。发展了基于FBE的渐近最优Wald检验和预测统计量。对FBE的模拟数据进行了计算机实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信