New uncertainty principles for the $(k,a)$-generalized wavelet transform

IF 0.6 4区 数学 Q3 MATHEMATICS
H. Mejjaoli
{"title":"New uncertainty principles for the $(k,a)$-generalized wavelet transform","authors":"H. Mejjaoli","doi":"10.33044/revuma.2051","DOIUrl":null,"url":null,"abstract":". We present the basic ( k,a )-generalized wavelet theory and prove several Heisenberg-type inequalities for this transform. After reviewing Pitt’s and Beckner’s inequalities for the ( k,a )-generalized Fourier transform, we connect both inequalities to show a generalization of uncertainty principles for the ( k,a )-generalized wavelet transform. We also present two concentration uncertainty principles, namely the Benedicks–Amrein–Berthier’s uncertainty principle and local uncertainty principles. Finally, we connect these inequalities to show a generalization of the uncertainty principle of Heisenberg type and we prove the Faris–Price uncertainty principle for the ( k,a )-generalized wavelet transform.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.2051","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

. We present the basic ( k,a )-generalized wavelet theory and prove several Heisenberg-type inequalities for this transform. After reviewing Pitt’s and Beckner’s inequalities for the ( k,a )-generalized Fourier transform, we connect both inequalities to show a generalization of uncertainty principles for the ( k,a )-generalized wavelet transform. We also present two concentration uncertainty principles, namely the Benedicks–Amrein–Berthier’s uncertainty principle and local uncertainty principles. Finally, we connect these inequalities to show a generalization of the uncertainty principle of Heisenberg type and we prove the Faris–Price uncertainty principle for the ( k,a )-generalized wavelet transform.
$(k,a)$广义小波变换的新不确定性原理
给出了基本的(k,a)-广义小波理论,并证明了该变换的几个Heisenberg型不等式。在回顾了(k,a)-广义傅立叶变换的Pitt不等式和Beckner不等式之后,我们将这两个不等式连接起来,以展示(k,a)-广义小波变换的不确定性原理的推广。我们还提出了两个集中不确定性原则,即Benedicks–Amrein–Berthier的不确定性原则和局部不确定性原则。最后,我们将这些不等式联系起来,证明了海森堡型不确定性原理的推广,并证明了(k,a)-广义小波变换的Faris–Price不确定性原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信