Positive answers to Koch’s problem in special cases

Q3 Mathematics
T. Banakh, S. Bardyla, Igor Guran, O. Gutik, A. Ravsky
{"title":"Positive answers to Koch’s problem in special cases","authors":"T. Banakh, S. Bardyla, Igor Guran, O. Gutik, A. Ravsky","doi":"10.1515/taa-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract A topological semigroup is monothetic provided it contains a dense cyclic subsemigroup. The Koch problem asks whether every locally compact monothetic monoid is compact. This problem was opened for more than sixty years, till in 2018 Zelenyuk obtained a negative answer. In this paper we obtain a positive answer for Koch’s problem for some special classes of topological monoids. Namely, we show that a locally compact monothetic topological monoid S is a compact topological group if and only if S is a submonoid of a quasitopological group if and only if S has open shifts if and only if S is non-viscous in the sense of Averbukh. The last condition means that any neighborhood U of the identity 1 of S and for any element a ∈ S there exists a neighborhood V of a such that any element x ∈ S with (xV ∪ Vx) ∩ V ≠ ∅ belongs to the neighborhood U of 1.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"8 1","pages":"76 - 87"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2020-0007","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2020-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract A topological semigroup is monothetic provided it contains a dense cyclic subsemigroup. The Koch problem asks whether every locally compact monothetic monoid is compact. This problem was opened for more than sixty years, till in 2018 Zelenyuk obtained a negative answer. In this paper we obtain a positive answer for Koch’s problem for some special classes of topological monoids. Namely, we show that a locally compact monothetic topological monoid S is a compact topological group if and only if S is a submonoid of a quasitopological group if and only if S has open shifts if and only if S is non-viscous in the sense of Averbukh. The last condition means that any neighborhood U of the identity 1 of S and for any element a ∈ S there exists a neighborhood V of a such that any element x ∈ S with (xV ∪ Vx) ∩ V ≠ ∅ belongs to the neighborhood U of 1.
特殊情况下对Koch问题的肯定回答
拓扑半群是一神论的,只要它包含稠密循环子半群。Koch问题询问是否每一个局部紧致的一神论单胚都是紧致的。这个问题被公开了60多年,直到2018年泽伦尤克得到了否定的答案。本文对一些特殊的拓扑半群的Koch问题给出了一个正解。也就是说,我们证明了局部紧致的一神论拓扑幺单体S是紧致拓扑群当且仅当S是拟拓扑群的子幺单体当且仅当S具有开移位当且仅若S在Averbukh意义上是非粘性的。最后一个条件意味着S的恒等式1的任何邻域U,并且对于任何元素a∈S,存在a的邻域V,使得任何元素x∈S且(xVõVx)≠V≠∅属于1的邻域U。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信