Rates of multivariate normal approximation for statistics in geometric probability

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Matthias Schulte, J. Yukich
{"title":"Rates of multivariate normal approximation for statistics in geometric probability","authors":"Matthias Schulte, J. Yukich","doi":"10.1214/22-aap1822","DOIUrl":null,"url":null,"abstract":"We employ stabilization methods and second order Poincar\\'e inequalities to establish rates of multivariate normal convergence for a large class of vectors $(H_s^{(1)},...,H_s^{(m)})$, $s \\geq 1$, of statistics of marked Poisson processes on $\\mathbb{R}^d$, $d \\geq 2$, as the intensity parameter $s$ tends to infinity. Our results are applicable whenever the constituent functionals $H_s^{(i)}$, $i\\in\\{1,...,m\\}$, are expressible as sums of exponentially stabilizing score functions satisfying a moment condition. The rates are for the $d_2$-, $d_3$-, and $d_{convex}$-distances. When we compare with a centered Gaussian random vector, whose covariance matrix is given by the asymptotic covariances, the rates are in general unimprovable and are governed by the rate of convergence of $s^{-1} {\\rm Cov}( H_s^{(i)}, H_s^{(j)})$, $i,j\\in\\{1,...,m\\}$, to the limiting covariance, shown to be of order $s^{-1/d}$. We use the general results to deduce rates of multivariate normal convergence for statistics arising in random graphs and topological data analysis as well as for multivariate statistics used to test equality of distributions. Some of our results hold for stabilizing functionals of Poisson input on suitable metric spaces.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1822","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

We employ stabilization methods and second order Poincar\'e inequalities to establish rates of multivariate normal convergence for a large class of vectors $(H_s^{(1)},...,H_s^{(m)})$, $s \geq 1$, of statistics of marked Poisson processes on $\mathbb{R}^d$, $d \geq 2$, as the intensity parameter $s$ tends to infinity. Our results are applicable whenever the constituent functionals $H_s^{(i)}$, $i\in\{1,...,m\}$, are expressible as sums of exponentially stabilizing score functions satisfying a moment condition. The rates are for the $d_2$-, $d_3$-, and $d_{convex}$-distances. When we compare with a centered Gaussian random vector, whose covariance matrix is given by the asymptotic covariances, the rates are in general unimprovable and are governed by the rate of convergence of $s^{-1} {\rm Cov}( H_s^{(i)}, H_s^{(j)})$, $i,j\in\{1,...,m\}$, to the limiting covariance, shown to be of order $s^{-1/d}$. We use the general results to deduce rates of multivariate normal convergence for statistics arising in random graphs and topological data analysis as well as for multivariate statistics used to test equality of distributions. Some of our results hold for stabilizing functionals of Poisson input on suitable metric spaces.
几何概率统计的多元正态逼近率
我们使用稳定化方法和二阶Poincar不等式来建立一大类向量$(H_s^{(1)},。。。,当强度参数$s$趋于无穷大时,$\mathbb{R}^d$,$d\geq2$上的标记泊松过程的统计的H_s^{(m)})$,$s\geq1$。只要构成泛函$H_s^{(i)}$,$i\in\{1,…,m\}$可以表示为满足矩条件的指数稳定分数函数的和,我们的结果就适用。费率适用于$d_2$-、$d_3$-和$d_{凸}$-距离。当我们与协方差矩阵由渐近协方差给出的中心高斯随机向量进行比较时,速率通常是不可改进的,并且由$s^{-1}{\rm-Cov}(H_s^{(i)},H_s^{(j)})$,$i,j\in\{1,…,m\}$的收敛速率控制,到极限协方差,显示为$s^{-1/d}$阶。我们使用一般结果来推导随机图和拓扑数据分析中出现的统计量以及用于检验分布相等性的多元统计量的多元正态收敛率。我们的一些结果适用于在适当的度量空间上稳定Poisson输入的泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信