Catalytic cracking of polyethylene plastic waste using synthesised zeolite Y from Nigerian kaolin deposit

IF 0.125
Abosede A. Ajibola, James A. Omoleye, Vincent E. Efeovbokhan
{"title":"Catalytic cracking of polyethylene plastic waste using synthesised zeolite Y from Nigerian kaolin deposit","authors":"Abosede A. Ajibola,&nbsp;James A. Omoleye,&nbsp;Vincent E. Efeovbokhan","doi":"10.1007/s13203-018-0216-7","DOIUrl":null,"url":null,"abstract":"<p>The increasing rate of accumulation of plastic waste (PW) is quite disturbing to the world, particularly in developing nations due to its non-biodegradable nature and inadequate waste management practices. The need to properly manage this waste and utilize the potential and chemical energy value that can be derived from this waste justifies the encouragement and employment of newer and better recycling methods and technology of these wastes. Therefore, this has led us to explore the catalytic pyrolysis of plastic waste using zeolite Y synthesized from kaolin deposit in Covenant University, Sango Ota, Ogun state of Nigeria. A stainless steel packed bed reactor was used in the cracking of low-density polyethylene (LDPE) plastic wastes into liquid fuel components at a temperature of 300?℃ using zeolite Y catalyst. The liquid fuel obtained from the catalytic pyrolysis was analyzed using GC–MS. Fifty compounds were identified, which revealed the presence of mostly alkenes and aromatics in the hydrocarbons range of C<sub>8</sub>–C<sub>29</sub>. This is made up of 56% of gasoline fractions range of C<sub>6</sub>–C<sub>12</sub>, 26% of diesel and kerosene fractions range C<sub>13</sub>–C<sub>18</sub>, and 10% of fuel oil range C<sub>18</sub>–C<sub>23</sub>, while 8% is residual fuel range greater than C<sub>24</sub>.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"8 4","pages":"211 - 217"},"PeriodicalIF":0.1250,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-018-0216-7","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-018-0216-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The increasing rate of accumulation of plastic waste (PW) is quite disturbing to the world, particularly in developing nations due to its non-biodegradable nature and inadequate waste management practices. The need to properly manage this waste and utilize the potential and chemical energy value that can be derived from this waste justifies the encouragement and employment of newer and better recycling methods and technology of these wastes. Therefore, this has led us to explore the catalytic pyrolysis of plastic waste using zeolite Y synthesized from kaolin deposit in Covenant University, Sango Ota, Ogun state of Nigeria. A stainless steel packed bed reactor was used in the cracking of low-density polyethylene (LDPE) plastic wastes into liquid fuel components at a temperature of 300?℃ using zeolite Y catalyst. The liquid fuel obtained from the catalytic pyrolysis was analyzed using GC–MS. Fifty compounds were identified, which revealed the presence of mostly alkenes and aromatics in the hydrocarbons range of C8–C29. This is made up of 56% of gasoline fractions range of C6–C12, 26% of diesel and kerosene fractions range C13–C18, and 10% of fuel oil range C18–C23, while 8% is residual fuel range greater than C24.

Abstract Image

利用尼日利亚高岭土合成Y型沸石催化裂化聚乙烯塑料废弃物
由于塑料垃圾的不可生物降解性和不充分的废物管理措施,塑料垃圾(PW)的积累速度越来越快,这对世界来说是相当令人不安的,特别是在发展中国家。由于需要妥善管理这些废物并利用从这些废物中可以获得的潜力和化学能价值,因此有理由鼓励和采用更新和更好的回收这些废物的方法和技术。因此,我们利用尼日利亚奥贡州圣约大学(Covenant University)高岭土矿床合成的Y型沸石,对塑料垃圾进行了催化热解研究。采用不锈钢填充床反应器,在300℃温度下将低密度聚乙烯(LDPE)塑料废弃物裂解为液体燃料组分。℃采用Y型沸石催化剂。采用气相色谱-质谱法对催化热解所得液体燃料进行了分析。共鉴定了50个化合物,在c8 ~ c29的烃类范围内主要存在烯烃和芳烃。其中,56%的汽油馏分在C6-C12范围内,26%的柴油和煤油馏分在C13-C18范围内,10%的燃料油在C18-C23范围内,8%的残余燃料大于C24。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Petrochemical Research
Applied Petrochemical Research ENGINEERING, CHEMICAL-
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信