Mariana Rodríguez-Jara, Carlos E. Ramírez-Castelan, Quetzalli Samano-Perfecto, L. Ricardez‐Sandoval, H. Puebla
{"title":"Robust control designs for microalgae cultivation in continuous photobioreactors","authors":"Mariana Rodríguez-Jara, Carlos E. Ramírez-Castelan, Quetzalli Samano-Perfecto, L. Ricardez‐Sandoval, H. Puebla","doi":"10.1515/ijcre-2022-0115","DOIUrl":null,"url":null,"abstract":"Abstract Microalgae are used to produce renewable biofuels and high-value components and in bioremediation and CO2 sequestration tasks. These increasing applications, in conjunction with a desirable constant large-scale productivity, motivate the development and application of practical controllers. This paper addresses the application of robust control schemes for microalgae cultivation in continuous photobioreactors. Due to the model uncertainties and external perturbations, robust control designs are required to guarantee the desired microalgae productivity. Furthermore, simple controller designs are desirable for practical implementation purposes. Therefore, two robust control designs are applied and evaluated in this paper for two relevant case studies of microalgae cultivation in photobioreactors. The first control design is based on an enhanced simple-input output model with uncertain estimation. The second control design is the robust nonlinear model predictive control considering different uncertain scenarios. Numerical simulations of two case studies aimed at lipid production and CO2 capture under different conditions are presented to evaluate the robust closed-loop performance.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"521 - 535"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Microalgae are used to produce renewable biofuels and high-value components and in bioremediation and CO2 sequestration tasks. These increasing applications, in conjunction with a desirable constant large-scale productivity, motivate the development and application of practical controllers. This paper addresses the application of robust control schemes for microalgae cultivation in continuous photobioreactors. Due to the model uncertainties and external perturbations, robust control designs are required to guarantee the desired microalgae productivity. Furthermore, simple controller designs are desirable for practical implementation purposes. Therefore, two robust control designs are applied and evaluated in this paper for two relevant case studies of microalgae cultivation in photobioreactors. The first control design is based on an enhanced simple-input output model with uncertain estimation. The second control design is the robust nonlinear model predictive control considering different uncertain scenarios. Numerical simulations of two case studies aimed at lipid production and CO2 capture under different conditions are presented to evaluate the robust closed-loop performance.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.