{"title":"Resistance to Sulfate Attack Under Drying–wetting Cycles of Reactive Magnesia–microbial Cured Electrolytic Manganese Residue","authors":"Jinlong Liu, X. Fang, Chun-miao Shen, Fenghui Hu, Xichen Zhang, Mingming Wang","doi":"10.1080/01490451.2023.2211070","DOIUrl":null,"url":null,"abstract":"Abstract The reactive MgO (r-MgO)-microbial curing technology can not only effectively improve the strength of electrolytic manganese residue (EMR) but also repair heavy metal ions. By conducting unconfined compressive strength (UCS) test, heavy metal leaching test, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP), the effects of the type and concentration of sulfate on the strength and repair of heavy metals of the cured EMR under drying–wetting (DW) cycles were studied, and the strength and the evolution mechanism of heavy metal remediation is elucidated. The results indicate the following: With the increase in the number of DW cycles, the dry density of the samples in high concentration of MgSO4 first increased slightly and then decreased gradually and became stable. The dry density of the samples in Na2SO4, low concentration of MgSO4, and water generally showed a downward trend. The pH of the soaking solution slightly decreased, and the leaching concentration of heavy metal Mn2+ ions always remained at a low level. The UCS of the samples in MgSO4 first increased slightly and then decreased gradually, and then became stable. The amount of cured products first increased and then decreased, and the size of internal pores first decreased and then increased. The UCS of the samples in Na2SO4 and water gradually decreased and became stable. The amount of cured products gradually decreased, and the size of internal pores gradually increased. The research results provide a theoretical basis for the evaluation of resistance against the sulfate corrosion of cured EMR under DW cycles.","PeriodicalId":12647,"journal":{"name":"Geomicrobiology Journal","volume":"40 1","pages":"547 - 559"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomicrobiology Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01490451.2023.2211070","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The reactive MgO (r-MgO)-microbial curing technology can not only effectively improve the strength of electrolytic manganese residue (EMR) but also repair heavy metal ions. By conducting unconfined compressive strength (UCS) test, heavy metal leaching test, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP), the effects of the type and concentration of sulfate on the strength and repair of heavy metals of the cured EMR under drying–wetting (DW) cycles were studied, and the strength and the evolution mechanism of heavy metal remediation is elucidated. The results indicate the following: With the increase in the number of DW cycles, the dry density of the samples in high concentration of MgSO4 first increased slightly and then decreased gradually and became stable. The dry density of the samples in Na2SO4, low concentration of MgSO4, and water generally showed a downward trend. The pH of the soaking solution slightly decreased, and the leaching concentration of heavy metal Mn2+ ions always remained at a low level. The UCS of the samples in MgSO4 first increased slightly and then decreased gradually, and then became stable. The amount of cured products first increased and then decreased, and the size of internal pores first decreased and then increased. The UCS of the samples in Na2SO4 and water gradually decreased and became stable. The amount of cured products gradually decreased, and the size of internal pores gradually increased. The research results provide a theoretical basis for the evaluation of resistance against the sulfate corrosion of cured EMR under DW cycles.
期刊介绍:
Geomicrobiology Journal is a unified vehicle for research and review articles in geomicrobiology and microbial biogeochemistry. One or two special issues devoted to specific geomicrobiological topics are published each year. General articles deal with microbial transformations of geologically important minerals and elements, including those that occur in marine and freshwater environments, soils, mineral deposits and rock formations, and the environmental biogeochemical impact of these transformations. In this context, the functions of Bacteria and Archaea, yeasts, filamentous fungi, micro-algae, protists, and their viruses as geochemical agents are examined.
Articles may stress the nature of specific geologically important microorganisms and their activities, or the environmental and geological consequences of geomicrobiological activity.
The Journal covers an array of topics such as:
microbial weathering;
microbial roles in the formation and degradation of specific minerals;
mineralization of organic matter;
petroleum microbiology;
subsurface microbiology;
biofilm form and function, and other interfacial phenomena of geological importance;
biogeochemical cycling of elements;
isotopic fractionation;
paleomicrobiology.
Applied topics such as bioleaching microbiology, geomicrobiological prospecting, and groundwater pollution microbiology are addressed. New methods and techniques applied in geomicrobiological studies are also considered.