{"title":"INVESTIGATION OF THE GEOMETRY OF THE D-PARTITION OF ONE-DIMENSIONAL PLANE OF PARAMETER OF THE CHARACTERISTIC EQUATION OF A CONTINUOUS SYSTEM","authors":"L. Movchan, S. Movchan","doi":"10.34229/1028-0979-2021-4-12","DOIUrl":null,"url":null,"abstract":"The paper considers two types of boundaries of the D-partition in the plane of one parameter of linear continuous systems given by the characteristic equation with real coefficients. The number of segments and intervals of stability of the X-partition curve is estimated. The maximum number of stability intervals is determined for different orders of polynomials of the equation of the boundary of the D-partition of the first kind (even order, odd order, one of even order, and the other of odd order). It is proved that the maximum number of stability intervals of a one-parameter family is different for all cases and depends on the ratio of the degrees of the polynomials of the equation of the D-partition curve. The derivative of the imaginary part of the expression of the investigated parameter at the initial point of the D-partition curve is obtained in an analytical form, the sign of which depends on the ratio of the coefficients of the characteristic equation and establishes the stability of the first interval of the real axis of the parameter plane. It is shown that for another type of the boundary of the D-partition in the plane of one parameter, there is only one interval of stability, the location of which, as for the previous type of the boundary of the stability region (BSR), is determined by the sign of the first derivative of the imaginary part of the expression of the parameter under study. Consider an example that illustrates the effectiveness of the proposed approach for constructing a BSR in a space of two parameters without using «Neimark hatching» and constructing special lines. In this case, a machine implementation of the construction of the stability region is provided. Considering that the problem of constructing the boundary of the stability region in the plane of two parameters is reduced to the problem of determining the BSR in the plane of one parameter, then the given estimates of the maximum number of stability regions in the plane of one parameter allow us to conclude about the number of maximum stability regions in the plane of two parameters, which are of practical interest. In this case, one of the parameters can enter nonlinearly into the coefficients of the characteristic equation.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-4-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers two types of boundaries of the D-partition in the plane of one parameter of linear continuous systems given by the characteristic equation with real coefficients. The number of segments and intervals of stability of the X-partition curve is estimated. The maximum number of stability intervals is determined for different orders of polynomials of the equation of the boundary of the D-partition of the first kind (even order, odd order, one of even order, and the other of odd order). It is proved that the maximum number of stability intervals of a one-parameter family is different for all cases and depends on the ratio of the degrees of the polynomials of the equation of the D-partition curve. The derivative of the imaginary part of the expression of the investigated parameter at the initial point of the D-partition curve is obtained in an analytical form, the sign of which depends on the ratio of the coefficients of the characteristic equation and establishes the stability of the first interval of the real axis of the parameter plane. It is shown that for another type of the boundary of the D-partition in the plane of one parameter, there is only one interval of stability, the location of which, as for the previous type of the boundary of the stability region (BSR), is determined by the sign of the first derivative of the imaginary part of the expression of the parameter under study. Consider an example that illustrates the effectiveness of the proposed approach for constructing a BSR in a space of two parameters without using «Neimark hatching» and constructing special lines. In this case, a machine implementation of the construction of the stability region is provided. Considering that the problem of constructing the boundary of the stability region in the plane of two parameters is reduced to the problem of determining the BSR in the plane of one parameter, then the given estimates of the maximum number of stability regions in the plane of one parameter allow us to conclude about the number of maximum stability regions in the plane of two parameters, which are of practical interest. In this case, one of the parameters can enter nonlinearly into the coefficients of the characteristic equation.
期刊介绍:
This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.