Paulo F. Teixeira, Loic Hilliou, Jose A. Covas, Esmaeil Narimissa, Leslie Poh, Manfred H. Wagner
{"title":"Comparison of shear viscosity and normal stress measurements by rotational and on-line slit rheometers with tube model predictions","authors":"Paulo F. Teixeira, Loic Hilliou, Jose A. Covas, Esmaeil Narimissa, Leslie Poh, Manfred H. Wagner","doi":"10.1007/s00397-022-01374-9","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>In-extruder measurements of shear viscosity and normal stresses are important as these measurement techniques allow determining the rheological state of the polymer melt at processing conditions up to high shear rates. However, validation of viscosity and normal stress data obtained by in-line slit rheometers at high shear rates is difficult due to a lack of overlap of the in-line data and the off-line measurements by rotational rheometers limited to lower shear rates. Here, shear viscosity and normal stress data measured in-line at large shear rates during extrusion and off-line at low shear rates are compared to predictions of the Doi-Edwards model and the Hierarchical Multi-Mode Molecular Stress Function (HMMSF) model using linear-viscoelastic off-line small amplitude oscillating shear data of two polystyrenes and a low-density polyethylene as input parameters. For polystyrene, the results of this investigation do not only validate the experimental data obtained by rotational as well as slit-die rheometry, but also demonstrate the agreement between experiments and models up to very high shear rates, which were not experimentally accessible earlier. The low-density polyethylene shows a more complex behaviour, which follows the HMMSF model at low shear rates, but approaches the Doi-Edwards model at high shear rates.</p></div></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"61 11-12","pages":"799 - 809"},"PeriodicalIF":2.3000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-022-01374-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-022-01374-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract
In-extruder measurements of shear viscosity and normal stresses are important as these measurement techniques allow determining the rheological state of the polymer melt at processing conditions up to high shear rates. However, validation of viscosity and normal stress data obtained by in-line slit rheometers at high shear rates is difficult due to a lack of overlap of the in-line data and the off-line measurements by rotational rheometers limited to lower shear rates. Here, shear viscosity and normal stress data measured in-line at large shear rates during extrusion and off-line at low shear rates are compared to predictions of the Doi-Edwards model and the Hierarchical Multi-Mode Molecular Stress Function (HMMSF) model using linear-viscoelastic off-line small amplitude oscillating shear data of two polystyrenes and a low-density polyethylene as input parameters. For polystyrene, the results of this investigation do not only validate the experimental data obtained by rotational as well as slit-die rheometry, but also demonstrate the agreement between experiments and models up to very high shear rates, which were not experimentally accessible earlier. The low-density polyethylene shows a more complex behaviour, which follows the HMMSF model at low shear rates, but approaches the Doi-Edwards model at high shear rates.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."