Antifungal Activity of Nanoemulsion of Iranian Tarragon (Artemisia dracunculus L.) Essential Oil

Q3 Agricultural and Biological Sciences
F. J. Kiasari, M. Azizkhani, F. Tooryan
{"title":"Antifungal Activity of Nanoemulsion of Iranian Tarragon (Artemisia dracunculus L.) Essential Oil","authors":"F. J. Kiasari, M. Azizkhani, F. Tooryan","doi":"10.18502/jfqhc.9.1.9690","DOIUrl":null,"url":null,"abstract":"Background: Despite the considerable activity of herbal Essential Oils (EOs) as safe food preservatives, problems such as high volatility, low water solubility, and low stability in adverse environmental conditions restrict their use in food products. This work aimed to investigate in vitro antifungal activity of oil-in-water nanoemulsion of Iranian Artemisia dracunculus L. (tarragon) EO. \nMethods: Nanoemulsion of tarragon EO was formed by ultrasound method through blending 10 wt% of tarragon EO, 85 wt% water, and the mixture of 5 wt% surfactants (Tween® 80/Span® 80). The droplet size and zeta potential were measured. The antifungal activity was evaluated against four different fungi, Aspergillus niger, Penicillium spp., Fusarium spp., and Saccharomyces cerevisiae through determining Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), and mycelial growth test. Data were statistically analyzed by the software of SPSS 22.0. \nResults: Main fragments of tarragon EO found to be beta-cis-ocimene, estragole, and beta-trans-ocimene. Nanodroplets had a zeta potential of -30 mV and an average diameter of 50 nm. For A. niger, Penicillium spp., Fusarium spp., and S. cerevisiae, the MIC and MFC values of nanoemulsion were identical and obtained at 1.50, 2.05, 1.61, and 1.14 µg/ml, respectively, while these values of free EO were higher and as follows: 2.81, 4.52, 3.75, and 2.40 µg/ml, respectively. Mycelial growth showed that encapsulated EO had the most fungitoxic potential against A. niger (inhibition 41%) and S. cerevisiae (inhibition 68%). Also, Penicillium spp. was the most resistant against both EO and nanoemulsion. \nConclusion: The growth inhibitory activity of tarragon was significantly enhanced when encapsulated as nanoemulsion.","PeriodicalId":37437,"journal":{"name":"Journal of Food Quality and Hazards Control","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Quality and Hazards Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jfqhc.9.1.9690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Background: Despite the considerable activity of herbal Essential Oils (EOs) as safe food preservatives, problems such as high volatility, low water solubility, and low stability in adverse environmental conditions restrict their use in food products. This work aimed to investigate in vitro antifungal activity of oil-in-water nanoemulsion of Iranian Artemisia dracunculus L. (tarragon) EO. Methods: Nanoemulsion of tarragon EO was formed by ultrasound method through blending 10 wt% of tarragon EO, 85 wt% water, and the mixture of 5 wt% surfactants (Tween® 80/Span® 80). The droplet size and zeta potential were measured. The antifungal activity was evaluated against four different fungi, Aspergillus niger, Penicillium spp., Fusarium spp., and Saccharomyces cerevisiae through determining Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), and mycelial growth test. Data were statistically analyzed by the software of SPSS 22.0. Results: Main fragments of tarragon EO found to be beta-cis-ocimene, estragole, and beta-trans-ocimene. Nanodroplets had a zeta potential of -30 mV and an average diameter of 50 nm. For A. niger, Penicillium spp., Fusarium spp., and S. cerevisiae, the MIC and MFC values of nanoemulsion were identical and obtained at 1.50, 2.05, 1.61, and 1.14 µg/ml, respectively, while these values of free EO were higher and as follows: 2.81, 4.52, 3.75, and 2.40 µg/ml, respectively. Mycelial growth showed that encapsulated EO had the most fungitoxic potential against A. niger (inhibition 41%) and S. cerevisiae (inhibition 68%). Also, Penicillium spp. was the most resistant against both EO and nanoemulsion. Conclusion: The growth inhibitory activity of tarragon was significantly enhanced when encapsulated as nanoemulsion.
伊朗龙蒿精油纳米乳液的抗真菌活性
背景:尽管草药精油作为安全的食品防腐剂具有相当大的活性,但其高挥发性、低水溶性和在不利环境条件下的低稳定性等问题限制了其在食品中的使用。本工作旨在研究伊朗龙蒿EO水包油纳米乳液的体外抗真菌活性。方法:采用超声法,将10 wt%龙蒿EO、85 wt%水和5 wt%表面活性剂(Tween®80/Span®80)的混合物共混,形成龙蒿EO纳米乳液。测量液滴尺寸和ζ电位。通过测定最低抑菌浓度(MIC)、最低杀菌浓度(MFC)和菌丝生长试验,评价了对黑曲霉、青霉、镰刀菌和酿酒酵母四种不同真菌的抗真菌活性。数据采用SPSS 22.0软件进行统计分析。结果:龙蒿EO的主要片段为β-顺式-奥西梅烯、雌二醇和β-反式-奥西梅烯。纳米液滴的ζ电位为-30 mV,平均直径为50 nm。对于黑曲霉、青霉菌、镰刀菌和酿酒酵母,纳米乳液的MIC和MFC值相同,分别为1.50、2.05、1.61和1.14µg/ml,而游离EO的这些值更高,分别为:2.81、4.52、3.75和2.40µg/ml。菌丝生长表明,包封的EO对黑曲霉(抑制41%)和酿酒酵母(抑制68%)具有最大的真菌毒性。此外,青霉对EO和纳米乳液的抗性最强。结论:龙蒿经纳米乳液包埋后,生长抑制活性明显增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Quality and Hazards Control
Journal of Food Quality and Hazards Control Agricultural and Biological Sciences-Food Science
CiteScore
1.50
自引率
0.00%
发文量
24
审稿时长
8 weeks
期刊介绍: Journal of Food Quality and Hazards Control (J. Food Qual. Hazards Control) is an international peer-reviewed quarterly journal that aims at publishing of high quality articles involved in food quality, food hygiene, food safety, and food control which scientists from all over the world may submit their manuscript. This academic journal aims to improve international exchange of new findings and recent developments in all aspects of agricultural and biological sciences. This free of charge journal is published in both online and print forms and welcomes the manuscripts that fulfill the general criteria of novelty and scientific importance. Among the most significant objectives of Journal of Food Quality and Hazards Control are to ensure that the articles reflect a wide range of topics regarding journal scopes; to do a fair, scientific, fast, as well as high quality peer-review process; to provide a wide and diverse geographical coverage of articles around the world; and to publish the articles having a trustable resource of scientific information for the audiences. The types of acceptable submissions include original article, review article, short communication, letter to the editor, case report, editorial, as well as book review. Journal of Food Quality and Hazards Control is an official journal of Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信