Bio-carbonization of Reactive Magnesia for Sandy Soil Solidification

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Jiancai Yan, Huaxun Wu, Yamin Ding, Jiahua Fan
{"title":"Bio-carbonization of Reactive Magnesia for Sandy Soil Solidification","authors":"Jiancai Yan, Huaxun Wu, Yamin Ding, Jiahua Fan","doi":"10.1080/01490451.2023.2204855","DOIUrl":null,"url":null,"abstract":"Abstract Bio-carbonization of reactive magnesia (r-MgO) is a new technology for sandy soil solidification. In this study, two sets of tests were conducted to investigate the influence of r-MgO contents on the bio-solidification effects of sandy soils, with the analysis of the unconfined compressive strength (UCS), permeability coefficient, sonic time value, and precipitation content. The relationship between r-MgO contents and solidification effects with a single treatment cycle was studied in the first sand solidification test. Then, the second sand solidification test was further conducted until their permeability coefficient reached about 10−6 cm/s to determine the maximum treatment cycle under various r-MgO contents. The results showed that the UCS, permeation resistance, and carbonate precipitation content were positively related to the r-MgO content if the solidification treatment was applied only once, while the sonic time value showed an opposite trend. Moreover, the maximum treatment cycle obtained under various r-MgO contents varied greatly. A high dosage of r-MgO could clearly reduce the maximum number of treatment cycles of the sand column, especially the r-MgO content larger than 15%. Decreased treatment cycle reduced carbonate precipitations in the sand column and decreased the UCS by over 40%. There was a close relationship between UCS and average carbonate precipitation contents for the bio-carbonated sand columns with the only one treatment cycles. However, the UCS of sand columns with multiple treatment cycles varied greatly within a similar average precipitation content. The results of this study lay a solid foundation for applying bio-carbonization of r-MgO in sandy soil solidification.","PeriodicalId":12647,"journal":{"name":"Geomicrobiology Journal","volume":"40 1","pages":"519 - 526"},"PeriodicalIF":2.2000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomicrobiology Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01490451.2023.2204855","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Bio-carbonization of reactive magnesia (r-MgO) is a new technology for sandy soil solidification. In this study, two sets of tests were conducted to investigate the influence of r-MgO contents on the bio-solidification effects of sandy soils, with the analysis of the unconfined compressive strength (UCS), permeability coefficient, sonic time value, and precipitation content. The relationship between r-MgO contents and solidification effects with a single treatment cycle was studied in the first sand solidification test. Then, the second sand solidification test was further conducted until their permeability coefficient reached about 10−6 cm/s to determine the maximum treatment cycle under various r-MgO contents. The results showed that the UCS, permeation resistance, and carbonate precipitation content were positively related to the r-MgO content if the solidification treatment was applied only once, while the sonic time value showed an opposite trend. Moreover, the maximum treatment cycle obtained under various r-MgO contents varied greatly. A high dosage of r-MgO could clearly reduce the maximum number of treatment cycles of the sand column, especially the r-MgO content larger than 15%. Decreased treatment cycle reduced carbonate precipitations in the sand column and decreased the UCS by over 40%. There was a close relationship between UCS and average carbonate precipitation contents for the bio-carbonated sand columns with the only one treatment cycles. However, the UCS of sand columns with multiple treatment cycles varied greatly within a similar average precipitation content. The results of this study lay a solid foundation for applying bio-carbonization of r-MgO in sandy soil solidification.
活性镁固化砂土的生物碳化研究
活性氧化镁生物炭化是一种新型的砂土固化技术。在本研究中,通过对无侧限抗压强度(UCS)、渗透系数、声波时间值和降水量的分析,研究了r-MgO含量对砂土生物固化效果的影响。在第一次砂固化试验中,研究了r-MgO含量与单一处理周期固化效果的关系。然后,进一步进行第二次砂固化试验,直到其渗透系数达到约10−6 cm/s,以确定在不同r-MgO含量下的最大处理周期。结果表明,如果只进行一次固化处理,UCS、渗透阻力和碳酸盐沉淀含量与r-MgO含量呈正相关,而声波时间值则呈现相反的趋势。此外,在不同r-MgO含量下获得的最大处理周期变化很大。高剂量的r-MgO可以明显减少砂柱的最大处理循环次数,尤其是当r-MgO含量大于15%时。处理周期的缩短减少了沙柱中碳酸盐的沉淀,使UCS降低了40%以上。只有一个处理周期的生物碳酸砂柱的无侧限抗压强度和平均碳酸盐沉淀量之间存在密切关系。然而,在相似的平均降水量范围内,具有多个处理周期的砂柱的UCS变化很大。研究结果为r-MgO生物碳化在砂土固化中的应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomicrobiology Journal
Geomicrobiology Journal 环境科学-地球科学综合
CiteScore
4.80
自引率
8.70%
发文量
70
审稿时长
3.3 months
期刊介绍: Geomicrobiology Journal is a unified vehicle for research and review articles in geomicrobiology and microbial biogeochemistry. One or two special issues devoted to specific geomicrobiological topics are published each year. General articles deal with microbial transformations of geologically important minerals and elements, including those that occur in marine and freshwater environments, soils, mineral deposits and rock formations, and the environmental biogeochemical impact of these transformations. In this context, the functions of Bacteria and Archaea, yeasts, filamentous fungi, micro-algae, protists, and their viruses as geochemical agents are examined. Articles may stress the nature of specific geologically important microorganisms and their activities, or the environmental and geological consequences of geomicrobiological activity. The Journal covers an array of topics such as: microbial weathering; microbial roles in the formation and degradation of specific minerals; mineralization of organic matter; petroleum microbiology; subsurface microbiology; biofilm form and function, and other interfacial phenomena of geological importance; biogeochemical cycling of elements; isotopic fractionation; paleomicrobiology. Applied topics such as bioleaching microbiology, geomicrobiological prospecting, and groundwater pollution microbiology are addressed. New methods and techniques applied in geomicrobiological studies are also considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信