Device modeling of Cs2PtI6-based perovskite solar cell with diverse transport materials and contact metal electrodes: a comprehensive simulation study using solar cell capacitance simulator
IF 1.5 4区 工程技术Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Device modeling of Cs2PtI6-based perovskite solar cell with diverse transport materials and contact metal electrodes: a comprehensive simulation study using solar cell capacitance simulator","authors":"M. Shamna, K. Sudheer","doi":"10.1117/1.JPE.12.032211","DOIUrl":null,"url":null,"abstract":"Abstract. Recently, all-inorganic double perovskite, lead-free absorber-based perovskite solar cells (PSCs) have been an active area of research. Due to its narrow bandgap and wide and high absorption, Cs2PtI6-based PSCs have generated wide interest. In this work, a comprehensive study of a Cs2PtI6-based PSC using solar cell capacitance simulator (SCAPS) one-dimensional is conducted. The simulation result is validated by comparing it with experimentally reported Cs2PtI6-based PSCs. To design a highly efficient, commercially feasible PSC, the variation in the performance of the PSC with six different electron transport layers (ETLs), ten-hole transport layers (HTLs), and nine metal contacts is investigated by simulation. Among the tried configurations, FTO / ZnO / Cs2PtI6 / MoO3 / Cu yielded the highest power conversion efficiency (PCE). The effect of varying the parameters of thickness, defect density, and doping concentration of the absorber layer; thickness, and doping concentration of the transport layers; and defect density of the interface layers on the performance of the device is investigated. The optimized device configuration yields an open-circuit voltage (Voc) of 1.3856 V, short-circuit current density (Jsc) of 16.107 mA / cm2, fill factor (FF) of 75.54%, and PCE of 16.85%. When the simulation is done with different back metal contacts, carbon yielded encouraging results with a Voc of 1.4105 V, Jsc of 16.112 mA / cm2, FF of 90.01%, and PCE of 20.45%.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"032211 - 032211"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.032211","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Recently, all-inorganic double perovskite, lead-free absorber-based perovskite solar cells (PSCs) have been an active area of research. Due to its narrow bandgap and wide and high absorption, Cs2PtI6-based PSCs have generated wide interest. In this work, a comprehensive study of a Cs2PtI6-based PSC using solar cell capacitance simulator (SCAPS) one-dimensional is conducted. The simulation result is validated by comparing it with experimentally reported Cs2PtI6-based PSCs. To design a highly efficient, commercially feasible PSC, the variation in the performance of the PSC with six different electron transport layers (ETLs), ten-hole transport layers (HTLs), and nine metal contacts is investigated by simulation. Among the tried configurations, FTO / ZnO / Cs2PtI6 / MoO3 / Cu yielded the highest power conversion efficiency (PCE). The effect of varying the parameters of thickness, defect density, and doping concentration of the absorber layer; thickness, and doping concentration of the transport layers; and defect density of the interface layers on the performance of the device is investigated. The optimized device configuration yields an open-circuit voltage (Voc) of 1.3856 V, short-circuit current density (Jsc) of 16.107 mA / cm2, fill factor (FF) of 75.54%, and PCE of 16.85%. When the simulation is done with different back metal contacts, carbon yielded encouraging results with a Voc of 1.4105 V, Jsc of 16.112 mA / cm2, FF of 90.01%, and PCE of 20.45%.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.