Bioinformatics profiling and expressional studies of microRNAs in root, stem and leaf of the bioenergy plant switchgrass (Panicum virgatum L.) under drought stress

Q1 Agricultural and Biological Sciences
Muhammad Younas Khan Barozai , Zhujia Ye , Sasikiran Reddy Sangireddy , Suping Zhou
{"title":"Bioinformatics profiling and expressional studies of microRNAs in root, stem and leaf of the bioenergy plant switchgrass (Panicum virgatum L.) under drought stress","authors":"Muhammad Younas Khan Barozai ,&nbsp;Zhujia Ye ,&nbsp;Sasikiran Reddy Sangireddy ,&nbsp;Suping Zhou","doi":"10.1016/j.aggene.2018.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Switchgrass (<em>Panicum virgatum</em> L.) is a perennial fodder grass and well known as a model renewable bioenergy crop. The plant's high production of biomass for biofuel supply is due to its fast-growing and wide adaptation properties. Very little studies and data are available about microRNAs (miRNAs) in this important biofuel crop. This situation demands to focus and identify new miRNAs and also to study their expressional analysis. In current research, a combination of computational and expressional approaches is applied to profile and characterize miRNAs in switchgrass and analyze some of them under drought stress. A total of 158 new miRNAs belonging to 83 families are identified and characterized from switchgrass expressed sequence tags (ESTs) and genomic survey sequences (GSS). In addition, five pre-miRNA clusters as well as four sense and antisense pre-miRNAs are also predicted from these newly identified miRNAs. Furthermore, 39 miRNAs were randomly selected and subjected to quantitative real-time RT-PCR expressional studies in root, leaf and stem of switchgrass under drought stress. A set of 13, 20 and 25 miRNAs are found as drought responding miRNAs in root, stem and leaf respectively. A total of 894 putative targets are also predicted for 158 switchgrass' miRNAs. These targets play roles in metabolism, transcription factor, signaling pathways, growth &amp; development, stress-related, transport protein and other vital processes. Such findings in switchgrass improved the baseline data of miRNAs and their targets. This data can be utilized to fine-tune this important bioenergy crop under biotic and abiotic stresses. Furthermore, it can also be used for the improvement of biofuel properties of the plant.</p></div>","PeriodicalId":37751,"journal":{"name":"Agri Gene","volume":"8 ","pages":"Pages 1-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aggene.2018.02.001","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agri Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352215118300047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 5

Abstract

Switchgrass (Panicum virgatum L.) is a perennial fodder grass and well known as a model renewable bioenergy crop. The plant's high production of biomass for biofuel supply is due to its fast-growing and wide adaptation properties. Very little studies and data are available about microRNAs (miRNAs) in this important biofuel crop. This situation demands to focus and identify new miRNAs and also to study their expressional analysis. In current research, a combination of computational and expressional approaches is applied to profile and characterize miRNAs in switchgrass and analyze some of them under drought stress. A total of 158 new miRNAs belonging to 83 families are identified and characterized from switchgrass expressed sequence tags (ESTs) and genomic survey sequences (GSS). In addition, five pre-miRNA clusters as well as four sense and antisense pre-miRNAs are also predicted from these newly identified miRNAs. Furthermore, 39 miRNAs were randomly selected and subjected to quantitative real-time RT-PCR expressional studies in root, leaf and stem of switchgrass under drought stress. A set of 13, 20 and 25 miRNAs are found as drought responding miRNAs in root, stem and leaf respectively. A total of 894 putative targets are also predicted for 158 switchgrass' miRNAs. These targets play roles in metabolism, transcription factor, signaling pathways, growth & development, stress-related, transport protein and other vital processes. Such findings in switchgrass improved the baseline data of miRNAs and their targets. This data can be utilized to fine-tune this important bioenergy crop under biotic and abiotic stresses. Furthermore, it can also be used for the improvement of biofuel properties of the plant.

干旱胁迫下柳枝稷根、茎、叶microrna的生物信息学分析及表达研究
柳枝稷(Panicum virgatum L.)是一种多年生饲料禾草,是一种典型的可再生生物能源作物。该植物的高产量用于生物燃料供应是由于其快速生长和广泛适应的特性。关于这种重要生物燃料作物中的microRNAs (miRNAs)的研究和数据很少。这种情况需要关注和鉴定新的mirna,并研究它们的表达分析。在目前的研究中,采用计算和表达相结合的方法来描述和表征柳枝稷的mirna,并分析干旱胁迫下的一些mirna。利用柳枝稷表达序列标签(ESTs)和基因组调查序列(GSS),共鉴定出83个科的158个新mirna。此外,这些新鉴定的mirna还预测了5个pre-miRNA簇以及4个正义和反义pre-miRNA。随机选取39个mirna,在干旱胁迫下柳枝稷根、叶和茎中进行实时定量RT-PCR表达研究。在根、茎和叶中分别发现了13、20和25个响应干旱的mirna。此外,还预测了柳枝稷158种mirna的894个可能靶点。这些靶点在代谢、转录因子、信号通路、生长等方面发挥作用。发育、应激相关、转运蛋白质等重要过程。柳枝稷的这些发现改善了mirna及其靶点的基线数据。这些数据可以用来在生物和非生物胁迫下微调这种重要的生物能源作物。此外,它还可以用于改善植物的生物燃料特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agri Gene
Agri Gene Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
自引率
0.00%
发文量
0
期刊介绍: Agri Gene publishes papers that focus on the regulation, expression, function and evolution of genes in crop plants, farm animals, and agriculturally important insects and microorganisms. Agri Gene strives to be a diverse journal and topics in multiple fields will be considered for publication so long as their main focus is on agriculturally important organisms (plants, animals, insects, or microorganisms). Although not limited to the following, some examples of potential topics include: Gene discovery and characterization. Genetic markers to guide traditional breeding. Genetic effects of transposable elements. Evolutionary genetics, molecular evolution, population genetics, and phylogenetics. Profiling of gene expression and genetic variation. Biotechnology and crop or livestock improvement. Genetic improvement of biological control microorganisms. Genetic control of secondary metabolic pathways and metabolic enzymes of crop pathogens. Transcription analysis of beneficial or pest insect developmental stages Agri Gene encourages submission of novel manuscripts that present a reasonable level of analysis, functional relevance and/or mechanistic insight. Agri Gene also welcomes papers that have predominantly a descriptive component but improve the essential basis of knowledge for subsequent functional studies, or which provide important confirmation of recently published discoveries provided that the information is new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信