LDL-conjugated to GM1 micelles incorporating anticancer drugs to improve tumor cell uptake

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
A. G. Garro, R. Alasino, V. Leonhard, V. Heredia, D. Beltramo
{"title":"LDL-conjugated to GM1 micelles incorporating anticancer drugs to improve tumor cell uptake","authors":"A. G. Garro, R. Alasino, V. Leonhard, V. Heredia, D. Beltramo","doi":"10.22038/NMJ.2021.08.003","DOIUrl":null,"url":null,"abstract":"Objective(s): The role of lipoproteins (LDL) as active molecules with preferential tumor interaction, but limited drug delivery capacity, has been previously reported. On the other hand, in a previous report, we demonstrated the high capacity of monosialogangliosides (GM1) micelles as drug transporters. Materials and Methods: In this work, GM1 was loaded with high doses of oncologic drugs such Paclitaxel or Doxorubicin and binded to LDL lipoproteins to form GM1-drug-LDLwater soluble complex. Evidence suggests that both, hydrophobic and electrostatic forces, participate in the interaction, regulated by conditions such as pH, temperature and ionic strength.Results: Results of DLS and TEM show that GM1-LDL complexes are considerably larger than the sum of their individual compounds, with a high charge of electronegative surface (-55.9 mV). In addition, the cytotoxic effect on cell cultures is greater when drugs are contained in GM1-LDL complexes than when loaded in GM1 micelles. Conclusion: The results suggest the participation of active energy-dependent mechanism in the uptake of GM1-LDL drug, probably linked to the LDL receptor by the tumor cells. However, we could not confirm that the transport through LDL receptors is the only one that participates in the cellular uptake of the micelles.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2021.08.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective(s): The role of lipoproteins (LDL) as active molecules with preferential tumor interaction, but limited drug delivery capacity, has been previously reported. On the other hand, in a previous report, we demonstrated the high capacity of monosialogangliosides (GM1) micelles as drug transporters. Materials and Methods: In this work, GM1 was loaded with high doses of oncologic drugs such Paclitaxel or Doxorubicin and binded to LDL lipoproteins to form GM1-drug-LDLwater soluble complex. Evidence suggests that both, hydrophobic and electrostatic forces, participate in the interaction, regulated by conditions such as pH, temperature and ionic strength.Results: Results of DLS and TEM show that GM1-LDL complexes are considerably larger than the sum of their individual compounds, with a high charge of electronegative surface (-55.9 mV). In addition, the cytotoxic effect on cell cultures is greater when drugs are contained in GM1-LDL complexes than when loaded in GM1 micelles. Conclusion: The results suggest the participation of active energy-dependent mechanism in the uptake of GM1-LDL drug, probably linked to the LDL receptor by the tumor cells. However, we could not confirm that the transport through LDL receptors is the only one that participates in the cellular uptake of the micelles.
LDL与结合抗癌药物的GM1胶束结合以提高肿瘤细胞的摄取
目的:脂蛋白(LDL)作为具有优先肿瘤相互作用但药物递送能力有限的活性分子的作用,以前已有报道。另一方面,在之前的一份报告中,我们证明了单唾液酸神经节苷脂(GM1)胶束作为药物转运蛋白的高容量。材料和方法:将大剂量抗癌药物紫杉醇或阿霉素负载于GM1中,与低密度脂蛋白结合形成GM1药物-LDL水溶性复合物。有证据表明,疏水力和静电力都参与了相互作用,受pH、温度和离子强度等条件的调节。结果:DLS和TEM的结果表明,GM1-LDL复合物明显大于其单个化合物的总和,具有高的负电荷表面(-55.9mV)。此外,当药物包含在GM1-LDL复合物中时,对细胞培养的细胞毒性作用大于负载在GM1胶束中时。结论:肿瘤细胞摄取GM1-LDL可能与低密度脂蛋白受体有关。然而,我们无法证实通过LDL受体的转运是唯一参与细胞摄取胶束的转运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomedicine Journal
Nanomedicine Journal NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信