Resynthesis of Spatial Room Impulse Response Tails With Anisotropic Multi-Slope Decays

IF 1.1 4区 工程技术 Q3 ACOUSTICS
C. Hold, Thomas McKenzie, Georg Götz, Sebastian J. Schlecht, V. Pulkki
{"title":"Resynthesis of Spatial Room Impulse Response Tails With Anisotropic Multi-Slope Decays","authors":"C. Hold, Thomas McKenzie, Georg Götz, Sebastian J. Schlecht, V. Pulkki","doi":"10.17743/jaes.2022.0017","DOIUrl":null,"url":null,"abstract":"Spatial room impulse responses (SRIRs) capture room acoustics with directional information. SRIRs measured in coupled rooms and spaces with non-uniform absorption distribution may exhibit anisotropic reverberation decays and multiple decay slopes. However, noisy measurements with low signal-to-noise ratios pose issues in analysis and reproduction in practice. This paper presents a method for resynthesis of the late decay of anisotropic SRIRs, effectively removing noise from SRIR measurements. The method accounts for both multi-slope decays and directional reverberation. A spherical filter bank extracts directionally constrained signals from Ambisonic input, which are then analyzed and parameterized in terms of multiple exponential decays and a noise floor. The noisy late reverberation is then resynthesized from the estimated parameters using modal synthesis, and the restored SRIR is reconstructed as Ambisonic signals. The method is evaluated both numerically and perceptually, which shows that SRIRs can be denoised with minimal error as long as parts of the decay slope are above the noise level, with signal-to-noise ratios as low as 40 dB in the presented experiment. The method can be used to increase the perceived spatial audio quality of noise-impaired SRIRs.","PeriodicalId":50008,"journal":{"name":"Journal of the Audio Engineering Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Audio Engineering Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17743/jaes.2022.0017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 5

Abstract

Spatial room impulse responses (SRIRs) capture room acoustics with directional information. SRIRs measured in coupled rooms and spaces with non-uniform absorption distribution may exhibit anisotropic reverberation decays and multiple decay slopes. However, noisy measurements with low signal-to-noise ratios pose issues in analysis and reproduction in practice. This paper presents a method for resynthesis of the late decay of anisotropic SRIRs, effectively removing noise from SRIR measurements. The method accounts for both multi-slope decays and directional reverberation. A spherical filter bank extracts directionally constrained signals from Ambisonic input, which are then analyzed and parameterized in terms of multiple exponential decays and a noise floor. The noisy late reverberation is then resynthesized from the estimated parameters using modal synthesis, and the restored SRIR is reconstructed as Ambisonic signals. The method is evaluated both numerically and perceptually, which shows that SRIRs can be denoised with minimal error as long as parts of the decay slope are above the noise level, with signal-to-noise ratios as low as 40 dB in the presented experiment. The method can be used to increase the perceived spatial audio quality of noise-impaired SRIRs.
具有各向异性多斜率衰减的空间房间脉冲响应尾的再合成
空间房间脉冲响应(SRIR)利用方向信息捕捉房间声学。在具有非均匀吸收分布的耦合房间和空间中测量的SRIR可能表现出各向异性混响衰减和多个衰减斜率。然而,具有低信噪比的噪声测量在实践中的分析和再现中提出了问题。本文提出了一种重新合成各向异性SRIR延迟衰减的方法,有效地去除了SRIR测量中的噪声。该方法同时考虑了多斜率衰减和定向混响。球形滤波器组从Ambisonic输入中提取定向约束信号,然后根据多个指数衰减和本底噪声对这些信号进行分析和参数化。然后使用模态合成从估计的参数中重新合成噪声后期混响,并将恢复的SRIR重建为Ambisonic信号。对该方法进行了数值和感知评估,表明只要部分衰减斜率高于噪声水平,SRIR就可以以最小的误差去噪,在所提出的实验中,信噪比低至40dB。该方法可用于提高噪声受损SRIR的感知空间音频质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Audio Engineering Society
Journal of the Audio Engineering Society 工程技术-工程:综合
CiteScore
3.50
自引率
14.30%
发文量
53
审稿时长
1 months
期刊介绍: The Journal of the Audio Engineering Society — the official publication of the AES — is the only peer-reviewed journal devoted exclusively to audio technology. Published 10 times each year, it is available to all AES members and subscribers. The Journal contains state-of-the-art technical papers and engineering reports; feature articles covering timely topics; pre and post reports of AES conventions and other society activities; news from AES sections around the world; Standards and Education Committee work; membership news, patents, new products, and newsworthy developments in the field of audio.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信