The depth of a Riemann surface and of a right-angled Artin group

IF 0.5 4区 数学
Yves Félix, Steve Halperin
{"title":"The depth of a Riemann surface and of a right-angled Artin group","authors":"Yves Félix,&nbsp;Steve Halperin","doi":"10.1007/s40062-019-00250-3","DOIUrl":null,"url":null,"abstract":"<p>We consider two families of spaces, <i>X</i>: the closed orientable Riemann surfaces of genus <span>\\(g&gt;0\\)</span> and the classifying spaces of right-angled Artin groups. In both cases we compare the depth of the fundamental group with the depth of an associated Lie algebra, <i>L</i>, that can be determined by the minimal Sullivan algebra. For these spaces we prove that </p><p>and give precise formulas for the depth.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 1","pages":"223 - 248"},"PeriodicalIF":0.5000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00250-3","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00250-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider two families of spaces, X: the closed orientable Riemann surfaces of genus \(g>0\) and the classifying spaces of right-angled Artin groups. In both cases we compare the depth of the fundamental group with the depth of an associated Lie algebra, L, that can be determined by the minimal Sullivan algebra. For these spaces we prove that

and give precise formulas for the depth.

黎曼曲面和直角阿廷群的深度
我们考虑了两个空间族,X:属\(g>0\)的闭合可定向Riemann曲面和直角Artin群的分类空间。在这两种情况下,我们将基本群的深度与相关李代数L的深度进行比较,L可以由最小沙利文代数确定。对于这些空间,我们证明了这一点,并给出了精确的深度公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信