A dataset of land surface water with a spatial resolution of 30 meters on the Qinghai-Tibet Plateau in 2022

Huichan Liu, G. He, Yan Peng, Gui-zhou Wang, R. Yin
{"title":"A dataset of land surface water with a spatial resolution of 30 meters on the Qinghai-Tibet Plateau in 2022","authors":"Huichan Liu, G. He, Yan Peng, Gui-zhou Wang, R. Yin","doi":"10.11922/11-6035.csd.2023.0040.zh","DOIUrl":null,"url":null,"abstract":"The Tibetan Plateau is known as the Asian Water Tower. The distribution of surface water and its changes are closely related to global change, biodiversity and water-related ecosystems. Based on the collection of high-precision land surface water samples, we used the random forest classification algorithm in machine learning to extract land surface water information from Landsat series satellite images and produced a dataset of land surface water with a spatial resolution of 30 meters on the Qinghai-Tibet Plateau based on satellite remote sensing images in 2022. According to data quality assessment, the overall accuracy of the dataset is 92.9%, and the Kappa coefficient is 0.84. This dataset can provide foundational data support for water resource monitoring, ecosystem services, and global change research on the Qinghai-Tibet Plateau.","PeriodicalId":57643,"journal":{"name":"China Scientific Data","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Scientific Data","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.11922/11-6035.csd.2023.0040.zh","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Tibetan Plateau is known as the Asian Water Tower. The distribution of surface water and its changes are closely related to global change, biodiversity and water-related ecosystems. Based on the collection of high-precision land surface water samples, we used the random forest classification algorithm in machine learning to extract land surface water information from Landsat series satellite images and produced a dataset of land surface water with a spatial resolution of 30 meters on the Qinghai-Tibet Plateau based on satellite remote sensing images in 2022. According to data quality assessment, the overall accuracy of the dataset is 92.9%, and the Kappa coefficient is 0.84. This dataset can provide foundational data support for water resource monitoring, ecosystem services, and global change research on the Qinghai-Tibet Plateau.
青藏高原2022年30米空间分辨率陆地地表水数据集
青藏高原被称为亚洲水塔。地表水的分布及其变化与全球变化、生物多样性和与水有关的生态系统密切相关。在采集高精度陆地地表水样本的基础上,利用机器学习中的随机森林分类算法从Landsat系列卫星图像中提取陆地地表水信息,并基于2022年卫星遥感图像生成了空间分辨率为30米的青藏高原陆地地表水数据集。根据数据质量评价,数据集的总体准确率为92.9%,Kappa系数为0.84。该数据集可为青藏高原水资源监测、生态系统服务和全球变化研究提供基础数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
389
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信