ANTI-VIRUS TOOLS ANALYSIS USING DEEP WEB MALWARES

I. Mishkovski, S. Šćepanović, Miroslav Mirchev, Sasho Gramatikov
{"title":"ANTI-VIRUS TOOLS ANALYSIS USING DEEP WEB MALWARES","authors":"I. Mishkovski, S. Šćepanović, Miroslav Mirchev, Sasho Gramatikov","doi":"10.5121/csit.2018.81713","DOIUrl":null,"url":null,"abstract":"Knowledge about the strength of the anti-virus engines (i.e. tools) to detect malware files on the Deep web is important for people and companies to devise proper security polices and to choose the proper tool in order to be more secure. In this study, using malware file set crawled from the Deep web we detect similarities and possible groupings between plethora of anti-virus tools (AVTs) that exist on the market. Moreover, using graph theory, data science and visualization we find which of the existing AVTs has greater advantage in detecting malware over the other AVTs, in a sense that the AVT detects many unique. Finally, we propose a solution, for the given malware set, what is the best strategy for a company to defend against malwares if it uses a multi-scanning approach.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2018.81713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge about the strength of the anti-virus engines (i.e. tools) to detect malware files on the Deep web is important for people and companies to devise proper security polices and to choose the proper tool in order to be more secure. In this study, using malware file set crawled from the Deep web we detect similarities and possible groupings between plethora of anti-virus tools (AVTs) that exist on the market. Moreover, using graph theory, data science and visualization we find which of the existing AVTs has greater advantage in detecting malware over the other AVTs, in a sense that the AVT detects many unique. Finally, we propose a solution, for the given malware set, what is the best strategy for a company to defend against malwares if it uses a multi-scanning approach.
基于deepweb恶意软件的反病毒工具分析
了解反病毒引擎(即工具)在深层网络上检测恶意软件文件的强度对于个人和公司设计适当的安全策略和选择适当的工具以提高安全性非常重要。在这项研究中,使用从深层网络抓取的恶意软件文件集,我们检测了市场上存在的大量反病毒工具(avt)之间的相似性和可能的分组。此外,利用图论、数据科学和可视化,我们发现现有的AVT在检测恶意软件方面比其他AVT有更大的优势,在某种意义上,AVT检测到许多独特的。最后,我们提出了一个解决方案,对于给定的恶意软件集,如果使用多重扫描方法,公司防御恶意软件的最佳策略是什么。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信