From p-Wasserstein bounds to moderate deviations

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Xiao Fang, Yuta Koike
{"title":"From p-Wasserstein bounds to moderate deviations","authors":"Xiao Fang, Yuta Koike","doi":"10.1214/23-ejp976","DOIUrl":null,"url":null,"abstract":"We use a new method via $p$-Wasserstein bounds to prove Cram\\'er-type moderate deviations in (multivariate) normal approximations. In the classical setting that $W$ is a standardized sum of $n$ independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of $0\\leq x=o(n^{1/6})$ and the near optimal error rate $O(1)(1+x)(\\log n+x^2)/\\sqrt{n}$ for $P(W>x)/(1-\\Phi(x))\\to 1$, where $\\Phi$ is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the $p$-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like $O(p^\\alpha \\Delta)$, $1\\leq p\\leq p_0$, for some constants $\\alpha, \\Delta$ and $p_0$. In the above i.i.d. setting, $\\alpha=1, \\Delta=1/\\sqrt{n}, p_0=n^{1/3}$. For this purpose, we obtain general $p$-Wasserstein bounds in (multivariate) normal approximations using Stein's method.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp976","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

We use a new method via $p$-Wasserstein bounds to prove Cram\'er-type moderate deviations in (multivariate) normal approximations. In the classical setting that $W$ is a standardized sum of $n$ independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of $0\leq x=o(n^{1/6})$ and the near optimal error rate $O(1)(1+x)(\log n+x^2)/\sqrt{n}$ for $P(W>x)/(1-\Phi(x))\to 1$, where $\Phi$ is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the $p$-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like $O(p^\alpha \Delta)$, $1\leq p\leq p_0$, for some constants $\alpha, \Delta$ and $p_0$. In the above i.i.d. setting, $\alpha=1, \Delta=1/\sqrt{n}, p_0=n^{1/3}$. For this purpose, we obtain general $p$-Wasserstein bounds in (multivariate) normal approximations using Stein's method.
从p-Wasserstein界到中等偏差
我们使用一种新的方法,通过$p$-Waserstein界来证明(多元)正态近似中的Cram’er型中偏差。在$W$是具有次指数尾的$n$独立同分布(i.i.d.)随机变量的标准和的经典设置中,我们的方法恢复了$0\leq x=o(n^{1/6})$的最优范围和$P(W>x)/(1-\Phi(x))\到1$的近似最优错误率$o(1)(1+x)(\log n+x^2)/\sqrt{n}$,其中$\Phi$是标准正态分布函数。我们的方法也适用于因随机变量(向量),并应用于组合中心极限定理、维纳混沌、齐次和和局部依赖。我们方法的关键步骤是证明,对于一些常数$\alpha、\Delta$和$p_0$,感兴趣的随机变量(向量)的分布和正态分布之间的$p$-Waserstein距离增长为$O(p^\alpha\Delta)$、$1\leq p\leq p_0$。在上述i.i.d.设置中,$\alpha=1,\Delta=1/\sqrt{n},p_0=n^{1/3}$。为此,我们使用Stein方法获得了(多元)正态近似中的一般$p$-Waserstein界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信