A neighborhood union condition for fractional $(k,n',m)$-critical deleted graphs

IF 0.6 Q3 MATHEMATICS
Yun Gao, M. Farahani, Wei Gao
{"title":"A neighborhood union condition for fractional $(k,n',m)$-critical deleted graphs","authors":"Yun Gao, M. Farahani, Wei Gao","doi":"10.22108/TOC.2017.20355","DOIUrl":null,"url":null,"abstract":"A graph $G$ is called a fractional‎ ‎$(k,n',m)$-critical deleted graph if any $n'$ vertices are removed‎ ‎from $G$ the resulting graph is a fractional $(k,m)$-deleted‎ ‎graph‎. ‎In this paper‎, ‎we prove that for integers $kge 2$‎, ‎$n',mge0$‎, ‎$nge8k+n'+4m-7$‎, ‎and $delta(G)ge k+n'+m$‎, ‎if‎ ‎$$|N_{G}(x)cup N_{G}(y)|gefrac{n+n'}{2}$$‎ ‎for each pair of non-adjacent vertices $x$‎, ‎$y$ of $G$‎, ‎then $G$‎ ‎is a fractional $(k,n',m)$-critical deleted graph‎. ‎The bounds for‎ ‎neighborhood union condition‎, ‎the order $n$ and the minimum degree‎ ‎$delta(G)$ of $G$ are all sharp‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"13-19"},"PeriodicalIF":0.6000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.20355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

A graph $G$ is called a fractional‎ ‎$(k,n',m)$-critical deleted graph if any $n'$ vertices are removed‎ ‎from $G$ the resulting graph is a fractional $(k,m)$-deleted‎ ‎graph‎. ‎In this paper‎, ‎we prove that for integers $kge 2$‎, ‎$n',mge0$‎, ‎$nge8k+n'+4m-7$‎, ‎and $delta(G)ge k+n'+m$‎, ‎if‎ ‎$$|N_{G}(x)cup N_{G}(y)|gefrac{n+n'}{2}$$‎ ‎for each pair of non-adjacent vertices $x$‎, ‎$y$ of $G$‎, ‎then $G$‎ ‎is a fractional $(k,n',m)$-critical deleted graph‎. ‎The bounds for‎ ‎neighborhood union condition‎, ‎the order $n$ and the minimum degree‎ ‎$delta(G)$ of $G$ are all sharp‎.
分数阶$(k,n',m)$-临界删除图的邻域联合条件
如果移除任何$n$顶点,则图$G称为分数$(k,n',m)$(n',m)-临界删除图本文证明了对于$kg2$kg,mge0,$n,$n NG}(y);gefrac-frac{n+n'(n+n)}个人$(k,n',m)$-关键删除图。邻域并集条件、$n阶和$G的最小度$delta(G)的边界都是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信