Tiered sentence based topic model for multi-document summarization

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
N. Akhtar, M. M. Sufyan Beg, Hira Javed, M. Hussain
{"title":"Tiered sentence based topic model for multi-document summarization","authors":"N. Akhtar, M. M. Sufyan Beg, Hira Javed, M. Hussain","doi":"10.1080/02522667.2022.2133219","DOIUrl":null,"url":null,"abstract":"Abstract In this work, a probabilistic two level topic model named Tiered Sentence based Topic Model is proposed which models the document at sentence and word levels and infer hierarchical latent topics for sentences. The proposed model uses two latent variables for the generation of words- a super topic and a subtopic for each sentence of the document, to model word groupings at sentence level. Popular super topics identify general theme of the documents and are used for selecting summary sentences. The model parameters are used for ranking sentences considering sentence importance and topic coverage. Collapsed Gibbs sampling is used for inference and parameter estimation. The proposed model is used to compare with two sentence based topic models- SenLDA and LDCC on query focused multi-document summarization task, over standard DUC2005 dataset using ROUGE-1 and ROUGE-2 precision and recall scores. The proposed model performs better than Latent Dirichlet Allocation and SenLDA but has been outperformed by LDCC.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02522667.2022.2133219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work, a probabilistic two level topic model named Tiered Sentence based Topic Model is proposed which models the document at sentence and word levels and infer hierarchical latent topics for sentences. The proposed model uses two latent variables for the generation of words- a super topic and a subtopic for each sentence of the document, to model word groupings at sentence level. Popular super topics identify general theme of the documents and are used for selecting summary sentences. The model parameters are used for ranking sentences considering sentence importance and topic coverage. Collapsed Gibbs sampling is used for inference and parameter estimation. The proposed model is used to compare with two sentence based topic models- SenLDA and LDCC on query focused multi-document summarization task, over standard DUC2005 dataset using ROUGE-1 and ROUGE-2 precision and recall scores. The proposed model performs better than Latent Dirichlet Allocation and SenLDA but has been outperformed by LDCC.
基于分层句子的多文档摘要主题模型
本文提出了一种基于句子和词两个层次的概率两层主题模型——基于分层句子的主题模型,该模型在句子和词两个层次上对文档进行建模,并对句子的潜在主题进行分层推断。该模型使用两个潜在变量生成单词——文档的每个句子的超级主题和子主题,以在句子级别对单词分组进行建模。流行超级主题确定了文档的总体主题,并用于选择总结句。模型参数用于考虑句子重要性和主题覆盖率对句子进行排序。采用崩塌吉布斯抽样进行推理和参数估计。在标准DUC2005数据集上,使用ROUGE-1和ROUGE-2的精度和召回率分数,将该模型与基于句子的主题模型SenLDA和LDCC进行查询多文档摘要任务的比较。该模型的性能优于潜在狄利克雷分配和SenLDA,但优于LDCC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信