{"title":"OPTIMISATION AND MODELING OF FLUORIDE REMOVAL BY ELECTROCOAGULATION IN A CONTINUOUS FLOW BIPOLAR REACTOR","authors":"T. Benderrah, M. Djedid, M. Naceur, M. Benalia","doi":"10.4314/JFAS.V13I2.8","DOIUrl":null,"url":null,"abstract":"In this study an experimental design was employed to investigate the effects of different operating conditions on the removal of fluoride by electrocoagulation with aluminum electrodes. Box-Behnken design was then used for optimizing and modeling the electrocoagulation process and for evaluating the effects and interactions of variables: current density (i, A/m2), flow rate (Q, mL/min), and initial fluoride concentration (C0, mg/L). The proposed model fitted very well with the experimental data. R2 adjusted correlation coefficients (AdjR2: 0.98) for fluoride removal efficiency showed a high significance of the model. The model predicted for a maximum removal of fluoride (95.07%) at the optimum operating conditions (120 A/m2, 120 mL/min and 30 mg/L) after the EC process was 94.76% at the same optimum operating conditions.","PeriodicalId":15885,"journal":{"name":"Journal of Fundamental and Applied Sciences","volume":"13 1","pages":"770-783"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/JFAS.V13I2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study an experimental design was employed to investigate the effects of different operating conditions on the removal of fluoride by electrocoagulation with aluminum electrodes. Box-Behnken design was then used for optimizing and modeling the electrocoagulation process and for evaluating the effects and interactions of variables: current density (i, A/m2), flow rate (Q, mL/min), and initial fluoride concentration (C0, mg/L). The proposed model fitted very well with the experimental data. R2 adjusted correlation coefficients (AdjR2: 0.98) for fluoride removal efficiency showed a high significance of the model. The model predicted for a maximum removal of fluoride (95.07%) at the optimum operating conditions (120 A/m2, 120 mL/min and 30 mg/L) after the EC process was 94.76% at the same optimum operating conditions.