Partial identification in nonseparable count data instrumental variable models

IF 2.9 4区 经济学 Q1 ECONOMICS
Dongwoo Kim
{"title":"Partial identification in nonseparable count data instrumental variable models","authors":"Dongwoo Kim","doi":"10.1093/ectj/utz025","DOIUrl":null,"url":null,"abstract":"\n This paper investigates undesirable limitations of widely used count data instrumental variable models. To overcome the limitations, I propose a partially identifying single-equation model that requires neither strong separability of unobserved heterogeneity nor a triangular system. Sharp bounds (identified sets) of structural features are characterised by conditional moment inequalities. Numerical examples show that the size of an identified set can be very small when the support of an outcome is rich or instruments are strong. An algorithm for estimation and inference is presented. I illustrate the usefulness of the proposed model in an empirical application to effects of supplemental insurance on healthcare utilisation.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"23 1","pages":"232-250"},"PeriodicalIF":2.9000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ectj/utz025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ectj/utz025","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates undesirable limitations of widely used count data instrumental variable models. To overcome the limitations, I propose a partially identifying single-equation model that requires neither strong separability of unobserved heterogeneity nor a triangular system. Sharp bounds (identified sets) of structural features are characterised by conditional moment inequalities. Numerical examples show that the size of an identified set can be very small when the support of an outcome is rich or instruments are strong. An algorithm for estimation and inference is presented. I illustrate the usefulness of the proposed model in an empirical application to effects of supplemental insurance on healthcare utilisation.
不可分计数数据工具变量模型的部分识别
本文研究了广泛使用的计数数据工具变量模型的不良局限性。为了克服这些限制,我提出了一个部分识别的单方程模型,该模型既不需要未观察到的异质性的强可分性,也不需要三角系统。结构特征的锐界(已识别集)以条件矩不等式为特征。数值例子表明,当对结果的支持很丰富或工具很强大时,识别集的大小可能很小。提出了一种估计和推理算法。我说明了所提出的模型在补充保险对医疗保健利用率影响的实证应用中的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信