Relative Importance Analysis for Psychological Research

M. Wijaya
{"title":"Relative Importance Analysis for Psychological Research","authors":"M. Wijaya","doi":"10.15408/jp3i.v10i1.20552","DOIUrl":null,"url":null,"abstract":"Multiple linear regression analysis is widely used among psychological researchers to answer their research question related to causality relationship. Exploring the relative importance of independent variables in explaining the total variation in dependent variable is one of the primary interests upon finding a good fit model from the data. This paper considers two popular methods to obtain relative importance, namely Shapley value regression and relative weight analysis. Both are able to break down the R2 of the full model into individual contribution proportion of each independent variable while accounting for the correlations between independent variables and thus offer easily interpretable effect size measures for regressions. Kaggle’s empirical data from the World Happiness 2019 will illustrate the theoretical concept of methods above.","PeriodicalId":34093,"journal":{"name":"Jurnal Pengukuran Psikologi dan Pendidikan Indonesia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Pengukuran Psikologi dan Pendidikan Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jp3i.v10i1.20552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple linear regression analysis is widely used among psychological researchers to answer their research question related to causality relationship. Exploring the relative importance of independent variables in explaining the total variation in dependent variable is one of the primary interests upon finding a good fit model from the data. This paper considers two popular methods to obtain relative importance, namely Shapley value regression and relative weight analysis. Both are able to break down the R2 of the full model into individual contribution proportion of each independent variable while accounting for the correlations between independent variables and thus offer easily interpretable effect size measures for regressions. Kaggle’s empirical data from the World Happiness 2019 will illustrate the theoretical concept of methods above.
心理学研究的相对重要性分析
多元线性回归分析在心理学研究者中被广泛应用,以回答他们关于因果关系的研究问题。探索自变量在解释因变量总变化中的相对重要性是从数据中找到一个良好拟合模型的主要兴趣之一。本文考虑了两种常用的获得相对重要性的方法,即Shapley值回归和相对权重分析。两者都能够将完整模型的R2分解为每个自变量的个人贡献比例,同时考虑自变量之间的相关性,从而为回归提供易于解释的效应大小度量。Kaggle来自《2019世界幸福》的经验数据将说明上述方法的理论概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信