Jaione Echávarri-Dublhán, Miriam Alonso-Santamaría, P. Luri-Esplandiu, María-José Sháiz-Abajo
{"title":"Comparison of different illumination systems for moisture prediction in cereal bars using hyperspectral imaging technology","authors":"Jaione Echávarri-Dublhán, Miriam Alonso-Santamaría, P. Luri-Esplandiu, María-José Sháiz-Abajo","doi":"10.1255/jsi.2022.a10","DOIUrl":null,"url":null,"abstract":"Moisture content and its distribution is a critical parameter in the production of cereal bars. Inappropriate control of this quality parameter can lead to non-conforming products and excess waste on production lines. In the field of hyperspectral imaging, the search for alternative light sources to stabilised-halogen (cheaper and emitting less heat) is a growing need for the application of this technology in industry. This study compares three different illumination systems for moisture prediction in the visible-near infrared (vis-NIR) range (from 400 nm to 1000 nm). The hyperspectral images were acquired using three illumination systems including two halogen-based systems (stabilised-halogen and conventional-halogen) and an LED-based illumination system. The results showed that halogen-based illumination systems combined with a partial least squares model better predicted moisture in bars. Lower accuracies were obtained when the experiment was performed with an LED-based illumination system, which showed double the error of the halogen-based systems. It was concluded that this is a consequence of the information lost in bands appearing above 850 nm that may be revealing information about the moisture in bars since the second overtone of the water O–H is found at 970 nm. The results demonstrate that conventional halogen-based light systems in the vis-NIR range are a promising method for moisture prediction in cereal bars.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2022.a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1
Abstract
Moisture content and its distribution is a critical parameter in the production of cereal bars. Inappropriate control of this quality parameter can lead to non-conforming products and excess waste on production lines. In the field of hyperspectral imaging, the search for alternative light sources to stabilised-halogen (cheaper and emitting less heat) is a growing need for the application of this technology in industry. This study compares three different illumination systems for moisture prediction in the visible-near infrared (vis-NIR) range (from 400 nm to 1000 nm). The hyperspectral images were acquired using three illumination systems including two halogen-based systems (stabilised-halogen and conventional-halogen) and an LED-based illumination system. The results showed that halogen-based illumination systems combined with a partial least squares model better predicted moisture in bars. Lower accuracies were obtained when the experiment was performed with an LED-based illumination system, which showed double the error of the halogen-based systems. It was concluded that this is a consequence of the information lost in bands appearing above 850 nm that may be revealing information about the moisture in bars since the second overtone of the water O–H is found at 970 nm. The results demonstrate that conventional halogen-based light systems in the vis-NIR range are a promising method for moisture prediction in cereal bars.
期刊介绍:
JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.