Stochastic Gradient Descent in Continuous Time: A Central Limit Theorem

Q1 Mathematics
Justin A. Sirignano, K. Spiliopoulos
{"title":"Stochastic Gradient Descent in Continuous Time: A Central Limit Theorem","authors":"Justin A. Sirignano, K. Spiliopoulos","doi":"10.1287/stsy.2019.0050","DOIUrl":null,"url":null,"abstract":"Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient method for the statistical learning of continuous-time models, which are widely used in science, engineering, and finance. The SGDCT algorithm follows a (noisy) descent direction along a continuous stream of data. The parameter updates occur in continuous time and satisfy a stochastic differential equation. This paper analyzes the asymptotic convergence rate of the SGDCT algorithm by proving a central limit theorem for strongly convex objective functions and, under slightly stronger conditions, for nonconvex objective functions as well. An [Formula: see text] convergence rate is also proven for the algorithm in the strongly convex case. The mathematical analysis lies at the intersection of stochastic analysis and statistical learning.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/stsy.2019.0050","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2019.0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 27

Abstract

Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient method for the statistical learning of continuous-time models, which are widely used in science, engineering, and finance. The SGDCT algorithm follows a (noisy) descent direction along a continuous stream of data. The parameter updates occur in continuous time and satisfy a stochastic differential equation. This paper analyzes the asymptotic convergence rate of the SGDCT algorithm by proving a central limit theorem for strongly convex objective functions and, under slightly stronger conditions, for nonconvex objective functions as well. An [Formula: see text] convergence rate is also proven for the algorithm in the strongly convex case. The mathematical analysis lies at the intersection of stochastic analysis and statistical learning.
连续时间随机梯度下降:一个中心极限定理
连续时间随机梯度下降(SGDCT)为连续时间模型的统计学习提供了一种计算效率高的方法,广泛应用于科学、工程和金融等领域。SGDCT算法沿着连续数据流的(有噪声的)下降方向。参数更新发生在连续时间内,并满足随机微分方程。本文通过证明一个中心极限定理,分析了SGDCT算法对强凸目标函数的渐近收敛速度,并在稍强的条件下证明了非凸目标函数的渐近收敛速度。本文还证明了该算法在强凸情况下的收敛率。数学分析是随机分析和统计学习的交集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信