Yongqiang Yin, Xiaoxiang Zhang, Zheng Guan, Yuehong Chen, Changjun Liu, Tao Yang
{"title":"Flash flood susceptibility mapping based on catchments using an improved Blending machine learning approach","authors":"Yongqiang Yin, Xiaoxiang Zhang, Zheng Guan, Yuehong Chen, Changjun Liu, Tao Yang","doi":"10.2166/nh.2023.139","DOIUrl":null,"url":null,"abstract":"\n Flash floods are a frequent and highly destructive natural hazard in China. In order to prevent and manage these disasters, it is crucial for decision-makers to create GIS-based flash flood susceptibility maps. In this study, we present an improved Blending approach, RF-Blending (Reserve Feature Blending), which differs from the Blending approach in that it preserves the original feature dataset during meta-learner training. Our objectives were to demonstrate the performance improvement of the RF-Blending approach and to produce flash flood susceptibility maps for all catchments in Jiangxi Province using the RF-Blending approach. The Blending approach employs a double-layer structure consisting of support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF) as base learners for level-0, and the output of level-0 is utilized as the meta-feature dataset for the meta-learner in level-1, which is logistic regression (LR). RF-Blending employs the output of level-0 along with the original feature dataset for meta-learner training. To develop flood susceptibility maps, we utilized these approaches in conjunction with historical flash flood points and catchment-based factors. Our results indicate that the RF-Blending approach outperformed the other approaches. These can significantly aid catchment-based flash flood susceptibility mapping and assist managers in controlling and remediating induced damages.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.139","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
Flash floods are a frequent and highly destructive natural hazard in China. In order to prevent and manage these disasters, it is crucial for decision-makers to create GIS-based flash flood susceptibility maps. In this study, we present an improved Blending approach, RF-Blending (Reserve Feature Blending), which differs from the Blending approach in that it preserves the original feature dataset during meta-learner training. Our objectives were to demonstrate the performance improvement of the RF-Blending approach and to produce flash flood susceptibility maps for all catchments in Jiangxi Province using the RF-Blending approach. The Blending approach employs a double-layer structure consisting of support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF) as base learners for level-0, and the output of level-0 is utilized as the meta-feature dataset for the meta-learner in level-1, which is logistic regression (LR). RF-Blending employs the output of level-0 along with the original feature dataset for meta-learner training. To develop flood susceptibility maps, we utilized these approaches in conjunction with historical flash flood points and catchment-based factors. Our results indicate that the RF-Blending approach outperformed the other approaches. These can significantly aid catchment-based flash flood susceptibility mapping and assist managers in controlling and remediating induced damages.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.