Tests of linear hypotheses using indirect information

Pub Date : 2023-02-11 DOI:10.1002/cjs.11760
Andrew McCormack, Peter D. Hoff
{"title":"Tests of linear hypotheses using indirect information","authors":"Andrew McCormack,&nbsp;Peter D. Hoff","doi":"10.1002/cjs.11760","DOIUrl":null,"url":null,"abstract":"<p>In multigroup data settings with small within-group sample sizes, standard <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation>$$ F $$</annotation>\n </semantics></math>-tests of group-specific linear hypotheses can have low power, particularly if the within-group sample sizes are not large relative to the number of explanatory variables. To remedy this situation, in this article we derive alternative test statistics based on information sharing across groups. Each group-specific test has potentially much larger power than the standard <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation>$$ F $$</annotation>\n </semantics></math>-test, while still exactly maintaining a target type I error rate if the null hypothesis for the group is true. The proposed test for a given group uses a statistic that has optimal marginal power under a prior distribution derived from the data of the other groups. This statistic approaches the usual <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation>$$ F $$</annotation>\n </semantics></math>-statistic as the prior distribution becomes more diffuse, but approaches a limiting “cone” test statistic as the prior distribution becomes extremely concentrated. We compare the power and <math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation>$$ P $$</annotation>\n </semantics></math>-values of the cone test to that of the <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation>$$ F $$</annotation>\n </semantics></math>-test in some high-dimensional asymptotic scenarios. An analysis of educational outcome data is provided, demonstrating empirically that the proposed test is more powerful than the <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation>$$ F $$</annotation>\n </semantics></math>-test.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In multigroup data settings with small within-group sample sizes, standard F $$ F $$ -tests of group-specific linear hypotheses can have low power, particularly if the within-group sample sizes are not large relative to the number of explanatory variables. To remedy this situation, in this article we derive alternative test statistics based on information sharing across groups. Each group-specific test has potentially much larger power than the standard F $$ F $$ -test, while still exactly maintaining a target type I error rate if the null hypothesis for the group is true. The proposed test for a given group uses a statistic that has optimal marginal power under a prior distribution derived from the data of the other groups. This statistic approaches the usual F $$ F $$ -statistic as the prior distribution becomes more diffuse, but approaches a limiting “cone” test statistic as the prior distribution becomes extremely concentrated. We compare the power and P $$ P $$ -values of the cone test to that of the F $$ F $$ -test in some high-dimensional asymptotic scenarios. An analysis of educational outcome data is provided, demonstrating empirically that the proposed test is more powerful than the F $$ F $$ -test.

分享
查看原文
利用间接信息检验线性假设
在组内样本量较小的多组数据设置中,组内特定线性假设的标准F $$ F $$检验可能具有较低的功效,特别是当组内样本量相对于解释变量的数量并不大时。为了纠正这种情况,在本文中,我们基于组间的信息共享导出了可选的测试统计信息。如果组的零假设为真,则每个组特定的测试可能比标准F $$ F $$ - test的功率大得多,同时仍然完全保持目标I型错误率。对于给定的组,建议的测试使用在从其他组的数据导出的先验分布下具有最优边际功率的统计量。当先验分布变得更加分散时,该统计量接近通常的F $$ F $$统计量,但当先验分布变得极其集中时,该统计量接近极限“锥”检验统计量。在一些高维渐近情形下,我们比较了锥检验与F $$ F $$检验的幂和P $$ P $$ -值。对教育成果数据的分析提供,实证证明,提出的测试比F $$ F $$‐测试更强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信