SPACES NOT DISTINGUISHING IDEAL CONVERGENCES OF REAL-VALUED FUNCTIONS, II

IF 0.1 Q4 MATHEMATICS
Miroslav Repický
{"title":"SPACES NOT DISTINGUISHING IDEAL CONVERGENCES OF REAL-VALUED FUNCTIONS, II","authors":"Miroslav Repický","doi":"10.14321/REALANALEXCH.46.2.0367","DOIUrl":null,"url":null,"abstract":"In [13] we gave combinatorial characterizations of non(P) of spaces expressing non-distinguishability of some ideal convergences and semi-convergences of sequences of continuous functions. In the present paper we study three of these invariants: non((I,JQN)-space), none((I,≤KJQN)-space), and none(w(I,JQN)-space). We study them in connection with partial orderings of ωω restricted to relations between I-to-one functions and J-to-one functions. In particular we prove that none(w(I,JQN)-space)≤b for every capacitous ideal J on ω. This generalizes the same result of Kwela for ideals J contained in an Fσ-ideal. If J is a capacitous P-ideal, then non((I,JQN)-space)=none((I,≤KJQN)-space)=b for every ideal I⊆J and none(w(I,JQN)-space)=b for every ideal I below J in the Katĕtov partial quasi-ordering of ideals.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/REALANALEXCH.46.2.0367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

In [13] we gave combinatorial characterizations of non(P) of spaces expressing non-distinguishability of some ideal convergences and semi-convergences of sequences of continuous functions. In the present paper we study three of these invariants: non((I,JQN)-space), none((I,≤KJQN)-space), and none(w(I,JQN)-space). We study them in connection with partial orderings of ωω restricted to relations between I-to-one functions and J-to-one functions. In particular we prove that none(w(I,JQN)-space)≤b for every capacitous ideal J on ω. This generalizes the same result of Kwela for ideals J contained in an Fσ-ideal. If J is a capacitous P-ideal, then non((I,JQN)-space)=none((I,≤KJQN)-space)=b for every ideal I⊆J and none(w(I,JQN)-space)=b for every ideal I below J in the Katĕtov partial quasi-ordering of ideals.
不区分实值函数的理想收敛的空间,ii
在[13]中,我们给出了表达连续函数序列的一些理想收敛和半收敛的不可分辨性的空间的非(P)的组合刻画。本文研究了其中的三个不变量:non((I,JQN)-space)、none((I,≤KJQN)-space)和none(w(I,JQN)-space)。我们将它们与ω的偏序联系起来研究,ω的偏序限制在i对1函数和j对1函数之间的关系中。特别证明了对于ω上的每一个电容理想J,都没有(w(I,JQN)-空间)≤b。这推广了Kwela对于包含在fσ -理想中的理想J的相同结果。若J是一个容性p理想,则在Katĕtov理想的部分拟序中,对每一个理想I ((I,JQN)-空间)=none((I,≤KJQN)-空间)=b,对小于J的每一个理想I (w(I,JQN)-空间)=b。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信