{"title":"SPACES NOT DISTINGUISHING IDEAL CONVERGENCES OF REAL-VALUED FUNCTIONS, II","authors":"Miroslav Repický","doi":"10.14321/REALANALEXCH.46.2.0367","DOIUrl":null,"url":null,"abstract":"In [13] we gave combinatorial characterizations of non(P) of spaces expressing non-distinguishability of some ideal convergences and semi-convergences of sequences of continuous functions. In the present paper we study three of these invariants: non((I,JQN)-space), none((I,≤KJQN)-space), and none(w(I,JQN)-space). We study them in connection with partial orderings of ωω restricted to relations between I-to-one functions and J-to-one functions. In particular we prove that none(w(I,JQN)-space)≤b for every capacitous ideal J on ω. This generalizes the same result of Kwela for ideals J contained in an Fσ-ideal. If J is a capacitous P-ideal, then non((I,JQN)-space)=none((I,≤KJQN)-space)=b for every ideal I⊆J and none(w(I,JQN)-space)=b for every ideal I below J in the Katĕtov partial quasi-ordering of ideals.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/REALANALEXCH.46.2.0367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
In [13] we gave combinatorial characterizations of non(P) of spaces expressing non-distinguishability of some ideal convergences and semi-convergences of sequences of continuous functions. In the present paper we study three of these invariants: non((I,JQN)-space), none((I,≤KJQN)-space), and none(w(I,JQN)-space). We study them in connection with partial orderings of ωω restricted to relations between I-to-one functions and J-to-one functions. In particular we prove that none(w(I,JQN)-space)≤b for every capacitous ideal J on ω. This generalizes the same result of Kwela for ideals J contained in an Fσ-ideal. If J is a capacitous P-ideal, then non((I,JQN)-space)=none((I,≤KJQN)-space)=b for every ideal I⊆J and none(w(I,JQN)-space)=b for every ideal I below J in the Katĕtov partial quasi-ordering of ideals.