The set of Arf numerical semigroups with given Frobenius number

IF 0.8 4区 数学 Q2 MATHEMATICS
M. A. Moreno-Fr'ias, J. Rosales
{"title":"The set of Arf numerical semigroups with given Frobenius number","authors":"M. A. Moreno-Fr'ias, J. Rosales","doi":"10.55730/1300-0098.3436","DOIUrl":null,"url":null,"abstract":"In this work we will show that if $F$ is a positive integer, then the set ${\\mathrm{Arf}}(F)=\\{S\\mid S \\mbox{ is an Arf numerical semigroup with Frobenius number } F\\}$ verifies the following conditions: 1) $\\Delta(F)=\\{0,F+1,\\rightarrow\\}$ is the minimum of ${\\mathrm{Arf}}(F),$ 2) if $\\{S, T\\} \\subseteq {\\mathrm{Arf}}(F)$, then $S \\cap T \\in {\\mathrm{Arf}}(F),$ 3) if $S \\in {\\mathrm{Arf}}(F),$ $S\\neq \\Delta(F)$ and ${\\mathrm m}(S)=\\min (S \\backslash \\{0\\})$, then $S\\backslash \\{{\\mathrm m}(S)\\} \\in {\\mathrm{Arf}}(F)$. The previous results will be used to give an algorithm which calculates the set ${\\mathrm{Arf}}(F).$ Also we will see that if $X\\subseteq S\\backslash \\Delta(F)$ for some $S\\in {\\mathrm{Arf}}(F),$ then there is the smallest element of ${\\mathrm{Arf}}(F)$ containing $X.$","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3436","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this work we will show that if $F$ is a positive integer, then the set ${\mathrm{Arf}}(F)=\{S\mid S \mbox{ is an Arf numerical semigroup with Frobenius number } F\}$ verifies the following conditions: 1) $\Delta(F)=\{0,F+1,\rightarrow\}$ is the minimum of ${\mathrm{Arf}}(F),$ 2) if $\{S, T\} \subseteq {\mathrm{Arf}}(F)$, then $S \cap T \in {\mathrm{Arf}}(F),$ 3) if $S \in {\mathrm{Arf}}(F),$ $S\neq \Delta(F)$ and ${\mathrm m}(S)=\min (S \backslash \{0\})$, then $S\backslash \{{\mathrm m}(S)\} \in {\mathrm{Arf}}(F)$. The previous results will be used to give an algorithm which calculates the set ${\mathrm{Arf}}(F).$ Also we will see that if $X\subseteq S\backslash \Delta(F)$ for some $S\in {\mathrm{Arf}}(F),$ then there is the smallest element of ${\mathrm{Arf}}(F)$ containing $X.$
给定Frobenius数的Arf数值半群的集合
在这项工作中,我们将证明如果$F$是一个正整数,那么集合${\mathrm{Arf}}(F)=\{S\mid S \mbox{ is an Arf numerical semigroup with Frobenius number } F\}$验证了以下条件:1)$\Delta(F)=\{0,F+1,\rightarrow\}$是${\mathrm{Arf}}(F),$的最小值;2)如果$\{S, T\} \subseteq {\mathrm{Arf}}(F)$,则$S \cap T \in {\mathrm{Arf}}(F),$; 3)如果$S \in {\mathrm{Arf}}(F),$,则$S\neq \Delta(F)$和${\mathrm m}(S)=\min (S \backslash \{0\})$,则$S\backslash \{{\mathrm m}(S)\} \in {\mathrm{Arf}}(F)$。前面的结果将用于给出计算集合${\mathrm{Arf}}(F).$的算法,我们还将看到,如果$X\subseteq S\backslash \Delta(F)$对于某些$S\in {\mathrm{Arf}}(F),$,那么${\mathrm{Arf}}(F)$包含的最小元素 $X.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信