Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants

IF 0.3 Q4 MATHEMATICS, APPLIED
Konstantin Yu. Denisov
{"title":"Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants","authors":"Konstantin Yu. Denisov","doi":"10.1515/dma-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract We consider the branching process Zn=Xn,1+⋯+XnZn−1 $ Z_{n} =X_{n, 1} + \\dotsb +X_{nZ_{n-1}} $, in random environmentsη, where η is a sequence of independent identically distributedvariables, for fixed η the random variables Xi, j areindependent, have the geometric distribution. We suppose that the associated random walk Sn=ξ1+⋯+ξn $ S_n = \\xi_1 + \\dotsb + \\xi_n $ has positive meanμ,0 < h<h+satisfies the right-hand Cramer’s condition Eexp(hξi) < ∞ for, some h+. Under theseassumptions, we find the asymptotic representation for local probabilities P(Zn=⌊exp(θ n)⌋) for θ ∈ [θ1, θ2]⊂</given−names><x> </x><surname>(μ;μ+) and someμ+.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider the branching process Zn=Xn,1+⋯+XnZn−1 $ Z_{n} =X_{n, 1} + \dotsb +X_{nZ_{n-1}} $, in random environmentsη, where η is a sequence of independent identically distributedvariables, for fixed η the random variables Xi, j areindependent, have the geometric distribution. We suppose that the associated random walk Sn=ξ1+⋯+ξn $ S_n = \xi_1 + \dotsb + \xi_n $ has positive meanμ,0 < h (μ;μ+) and someμ+.
子体几何分布随机环境中分支过程大偏差的渐近局部概率
摘要我们考虑了在随机环境η中的分支过程Zn=Xn,1+…+XnZn−1$Z_{n}=X_{n,1}+\dotsb+X_{nZ_{n-1}}$,其中η是独立的同分布变量序列,对于固定的η,随机变量Xi,j是独立的,具有几何分布。我们假设相关的随机行走Sn=ξ1+ξ+ξn$S_n=\xi_1+\dotsb+\xi_n$具有正平均μ  μ+)和一些μ+。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信