{"title":"Piloted space flight and post-genomic technologies","authors":"I.M. Larina , L.Kh. Pastushkova , A.S. Kononikhin , E.N. Nikolaev , O.I. Orlov","doi":"10.1016/j.reach.2020.100034","DOIUrl":null,"url":null,"abstract":"<div><p>Space flight is an aggregation of the most extreme conditions that can be faced by humans. At present, space crews live and work aboard orbital stations in low Earth's orbits; however, controlled missions to the Moon and Mars planned for the near future will necessitate an extended autonomous existence of crews in the outer space. Although humanity seeks to explore deep space, space flight factors still pose a serious barrier to long-range missions. It is widely known that spaceflight factors disturb homeostatic systems of organism and impact functioning of the majority of physiological systems. According to the current concept, all changes occurring in the physiological systems during space flight are reversible. However, recovery of some systems after exposure in microgravity can be longer than actual mission duration. Nowadays the leading space agencies initiate research programs focused on molecular mechanisms of the spaceflight effects on human organism. It is believed that proteome remodeling in microgravity will shed light on molecular mechanisms and, specifically, signaling networks involved in the adaptive response of organism to the spaceflight environment. However none of the existing post-genomic technologies is applicable onboard spacecraft because of dimensions and mass of instruments, liquid behavior in microgravity and power constraints. Purpose of the review was to systemize the available proteomic data on the effects of spaceflight factors on the human organism obtained after real space flights and in ground simulation experiments. New molecular data will contribute to new physiotherapeutic methods and drugs development preventing undesirable changes in crew health.</p></div>","PeriodicalId":37501,"journal":{"name":"REACH","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.reach.2020.100034","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"REACH","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352309319300057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1
Abstract
Space flight is an aggregation of the most extreme conditions that can be faced by humans. At present, space crews live and work aboard orbital stations in low Earth's orbits; however, controlled missions to the Moon and Mars planned for the near future will necessitate an extended autonomous existence of crews in the outer space. Although humanity seeks to explore deep space, space flight factors still pose a serious barrier to long-range missions. It is widely known that spaceflight factors disturb homeostatic systems of organism and impact functioning of the majority of physiological systems. According to the current concept, all changes occurring in the physiological systems during space flight are reversible. However, recovery of some systems after exposure in microgravity can be longer than actual mission duration. Nowadays the leading space agencies initiate research programs focused on molecular mechanisms of the spaceflight effects on human organism. It is believed that proteome remodeling in microgravity will shed light on molecular mechanisms and, specifically, signaling networks involved in the adaptive response of organism to the spaceflight environment. However none of the existing post-genomic technologies is applicable onboard spacecraft because of dimensions and mass of instruments, liquid behavior in microgravity and power constraints. Purpose of the review was to systemize the available proteomic data on the effects of spaceflight factors on the human organism obtained after real space flights and in ground simulation experiments. New molecular data will contribute to new physiotherapeutic methods and drugs development preventing undesirable changes in crew health.
期刊介绍:
The Official Human Space Exploration Review Journal of the International Academy of Astronautics (IAA) and the International Astronautical Federation (IAF) REACH – Reviews in Human Space Exploration is an international review journal that covers the entire field of human space exploration, including: -Human Space Exploration Mission Scenarios -Robotic Space Exploration Missions (Preparing or Supporting Human Missions) -Commercial Human Spaceflight -Space Habitation and Environmental Health -Space Physiology, Psychology, Medicine and Environmental Health -Space Radiation and Radiation Biology -Exo- and Astrobiology -Search for Extraterrestrial Intelligence (SETI) -Spin-off Applications from Human Spaceflight -Benefits from Space-Based Research for Health on Earth -Earth Observation for Agriculture, Climate Monitoring, Disaster Mitigation -Terrestrial Applications of Space Life Sciences Developments -Extreme Environments REACH aims to meet the needs of readers from academia, industry, and government by publishing comprehensive overviews of the science of human and robotic space exploration, life sciences research in space, and beneficial terrestrial applications that are derived from spaceflight. Special emphasis will be put on summarizing the most important recent developments and challenges in each of the covered fields, and on making published articles legible for a non-specialist audience. Authors can also submit non-solicited review articles. Please note that original research articles are not published in REACH. The Journal plans to publish four issues per year containing six to eight review articles each.