Measuring the suboptimality of dividend controls in a Brownian risk model

Pub Date : 2023-06-07 DOI:10.1017/apr.2023.6
J. Eisenberg, Paul Krühner
{"title":"Measuring the suboptimality of dividend controls in a Brownian risk model","authors":"J. Eisenberg, Paul Krühner","doi":"10.1017/apr.2023.6","DOIUrl":null,"url":null,"abstract":"\n We consider an insurance company modelling its surplus process by a Brownian motion with drift. Our target is to maximise the expected exponential utility of discounted dividend payments, given that the dividend rates are bounded by some constant. The utility function destroys the linearity and the time-homogeneity of the problem considered. The value function depends not only on the surplus, but also on time. Numerical considerations suggest that the optimal strategy, if it exists, is of a barrier type with a nonlinear barrier. In the related article of Grandits et al. (Scand. Actuarial J.2, 2007), it has been observed that standard numerical methods break down in certain parameter cases, and no closed-form solution has been found. For these reasons, we offer a new method allowing one to estimate the distance from an arbitrary smooth-enough function to the value function. Applying this method, we investigate the goodness of the most obvious suboptimal strategies—payout on the maximal rate, and constant barrier strategies—by measuring the distance from their performance functions to the value function.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2023.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider an insurance company modelling its surplus process by a Brownian motion with drift. Our target is to maximise the expected exponential utility of discounted dividend payments, given that the dividend rates are bounded by some constant. The utility function destroys the linearity and the time-homogeneity of the problem considered. The value function depends not only on the surplus, but also on time. Numerical considerations suggest that the optimal strategy, if it exists, is of a barrier type with a nonlinear barrier. In the related article of Grandits et al. (Scand. Actuarial J.2, 2007), it has been observed that standard numerical methods break down in certain parameter cases, and no closed-form solution has been found. For these reasons, we offer a new method allowing one to estimate the distance from an arbitrary smooth-enough function to the value function. Applying this method, we investigate the goodness of the most obvious suboptimal strategies—payout on the maximal rate, and constant barrier strategies—by measuring the distance from their performance functions to the value function.
分享
查看原文
布朗风险模型中股利控制的次优性度量
我们考虑一家保险公司通过带有漂移的布朗运动来模拟其盈余过程。我们的目标是最大限度地提高贴现股息支付的预期指数效用,因为股息率受一些常数的限制。效用函数破坏了所考虑问题的线性和时间同质性。价值函数不仅取决于盈余,还取决于时间。数值考虑表明,如果存在最优策略,则该策略是具有非线性屏障的屏障类型。在Grandits等人的相关文章(Scand.Actuaial J.22007)中,已经观察到标准数值方法在某些参数情况下会崩溃,并且没有找到闭合形式的解。由于这些原因,我们提供了一种新的方法,允许人们估计从任意光滑的足够函数到值函数的距离。应用这种方法,我们通过测量从性能函数到价值函数的距离,研究了最明显的次优策略——最大利率支付策略和恒定屏障策略——的优度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信