Mechanical Properties Evaluation and Crack Propagation Behavior in Dissimilar Metal Welded Joints of 304 L Austenitic Stainless Steel and SA508 Low-Alloy Steel
Yuman Sun, H. Xue, Fu-qiang Yang, Shuai Wang, Shun Zhang, Jinxuan He, R. Bashir
{"title":"Mechanical Properties Evaluation and Crack Propagation Behavior in Dissimilar Metal Welded Joints of 304 L Austenitic Stainless Steel and SA508 Low-Alloy Steel","authors":"Yuman Sun, H. Xue, Fu-qiang Yang, Shuai Wang, Shun Zhang, Jinxuan He, R. Bashir","doi":"10.1155/2022/3038397","DOIUrl":null,"url":null,"abstract":"The material mechanical properties and crack propagation behavior of dissimilar metal welded joint (DMWJ) of pressurized water reactor (PWR) was investigated. In this research, the mechanical parameters of the cladding layer materials (304L-SA508) of the DMWJ in PWRs were obtained by the continuous indentation test. Simultaneously, the user-defined (USDFLD) subroutine in ABAQUS was used to establish the heterogeneous materials model of the welded joint. On this basis, the local crack propagation path of DMWJs has been discussed based on the extended finite element method (XFEM). The result indicated that the strength value at the fusion boundary line (FB line) is the largest, and the yield strength reaches 689 MPa. The yield stress values of the cladding metal (304 L) and base metal (SA508) are 371 MPa and 501 MPa, respectively. Affected by the material constraint effect of the DMWJ, the crack will propagate through the FB line when the initial crack is perpendicular to the FB line. And when the initial crack parallels the FB line, the crack will deviate from it. Meanwhile, the crack propagation length is smaller as the initial crack tip is closer to the FB line when the load condition is constant.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/3038397","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
The material mechanical properties and crack propagation behavior of dissimilar metal welded joint (DMWJ) of pressurized water reactor (PWR) was investigated. In this research, the mechanical parameters of the cladding layer materials (304L-SA508) of the DMWJ in PWRs were obtained by the continuous indentation test. Simultaneously, the user-defined (USDFLD) subroutine in ABAQUS was used to establish the heterogeneous materials model of the welded joint. On this basis, the local crack propagation path of DMWJs has been discussed based on the extended finite element method (XFEM). The result indicated that the strength value at the fusion boundary line (FB line) is the largest, and the yield strength reaches 689 MPa. The yield stress values of the cladding metal (304 L) and base metal (SA508) are 371 MPa and 501 MPa, respectively. Affected by the material constraint effect of the DMWJ, the crack will propagate through the FB line when the initial crack is perpendicular to the FB line. And when the initial crack parallels the FB line, the crack will deviate from it. Meanwhile, the crack propagation length is smaller as the initial crack tip is closer to the FB line when the load condition is constant.
期刊介绍:
Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.