Realizations of inner automorphisms of order four and fixed points subgroups by them on the connected compact exceptional Lie group $E_8$, Part II

IF 0.3 Q4 MATHEMATICS
Toshikazu Miyashita
{"title":"Realizations of inner automorphisms of order four and fixed points subgroups by them on the connected compact exceptional Lie group $E_8$, Part II","authors":"Toshikazu Miyashita","doi":"10.21099/TKBJM/1571968818","DOIUrl":null,"url":null,"abstract":"The compact simply connected Riemannian 4-symmetric spaces were classified by J.A. Jim{e}nez according to type of the Lie algebras. As homogeneous manifolds, these spaces are of the form $G/H$, where $G$ is a connected compact simple Lie group with an automorphism $\\tilde{\\gamma}$ of order four on $G$ and $H$ is a fixed points subgroup $G^\\gamma$ of $G$. According to the classification by J.A. Jim{e}nez, there exist seven compact simply connected Riemannian 4-symmetric spaces $ G/H $ in the case where $ G $ is of type $ E_8 $. In the present article, %as Part II continuing from Part I, for the connected compact %exceptional Lie group $E_8$, we give the explicit form of automorphisms $\\tilde{w}_{{}_4} \\tilde{\\upsilon}_{{}_4}$ and $\\tilde{\\mu}_{{}_4}$ of order four on $E_8$ induced by the $C$-linear transformations $w_{{}_4}, \\upsilon_{{}_4}$ and $\\mu_{{}_4}$ of the 248-dimensional vector space ${\\mathfrak{e}_8}^{C}$, respectively. Further, we determine the structure of these fixed points subgroups $(E_8)^{w_{{}_4}}, (E_8)^{{}_{\\upsilon_{{}_4}}}$ and $(E_8)^{{} _{\\mu_{{}_4}}}$ of $ E_8 $. These amount to the global realizations of three spaces among seven Riemannian 4-symmetric spaces $ G/H $ above corresponding to the Lie algebras $ \\mathfrak{h}=i\\bm{R} \\oplus \\mathfrak{su}(8), i\\bm{R} \\oplus \\mathfrak{e}_7$ and $\\mathfrak{h}= \\mathfrak{su}(2) \\oplus \\mathfrak{su}(8)$, where $ \\mathfrak{h}={\\rm Lie}(H) $.","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/TKBJM/1571968818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The compact simply connected Riemannian 4-symmetric spaces were classified by J.A. Jim{e}nez according to type of the Lie algebras. As homogeneous manifolds, these spaces are of the form $G/H$, where $G$ is a connected compact simple Lie group with an automorphism $\tilde{\gamma}$ of order four on $G$ and $H$ is a fixed points subgroup $G^\gamma$ of $G$. According to the classification by J.A. Jim{e}nez, there exist seven compact simply connected Riemannian 4-symmetric spaces $ G/H $ in the case where $ G $ is of type $ E_8 $. In the present article, %as Part II continuing from Part I, for the connected compact %exceptional Lie group $E_8$, we give the explicit form of automorphisms $\tilde{w}_{{}_4} \tilde{\upsilon}_{{}_4}$ and $\tilde{\mu}_{{}_4}$ of order four on $E_8$ induced by the $C$-linear transformations $w_{{}_4}, \upsilon_{{}_4}$ and $\mu_{{}_4}$ of the 248-dimensional vector space ${\mathfrak{e}_8}^{C}$, respectively. Further, we determine the structure of these fixed points subgroups $(E_8)^{w_{{}_4}}, (E_8)^{{}_{\upsilon_{{}_4}}}$ and $(E_8)^{{} _{\mu_{{}_4}}}$ of $ E_8 $. These amount to the global realizations of three spaces among seven Riemannian 4-symmetric spaces $ G/H $ above corresponding to the Lie algebras $ \mathfrak{h}=i\bm{R} \oplus \mathfrak{su}(8), i\bm{R} \oplus \mathfrak{e}_7$ and $\mathfrak{h}= \mathfrak{su}(2) \oplus \mathfrak{su}(8)$, where $ \mathfrak{h}={\rm Lie}(H) $.
连通紧致例外李群$E_8$上四阶内自同构及其不动点子群的实现(Ⅱ)
J.A.Jim对紧单连通黎曼4-对称空间进行了分类{e}nez根据李代数的类型。作为齐次流形,这些空间的形式为$G/H$,其中$G$是在$G$上具有四阶自同构$\tilde{\gamma}$的连通紧致单李群,$H$是$G$的不动点子群$G^\gamma。根据J.A.Jim的分类{e}nez在$G$为$E_8$型的情况下,存在七个紧致单连通黎曼4-对称空间$G/H$。在本文的第二部分中,从第一部分继续,对于连通紧致%例外李群$E_8$,我们给出了自同构$\tilde的显式{w}_由248维向量空间${\mathfrak的$C$线性变换$w_{}_4}、\upsilon\{}_4}$和$\mu_{e}_8}^{C} 美元。进一步,我们确定了$E_8$的这些不动点子群$(E_8)^{w_{{}_4}}、(E_8。这些相当于对应于李代数$\mathfrak{H}=i\bm{R}\oplus\mathfrak{su}(8),i\bm{R}\oplus\athfrak的七个黎曼4-对称空间$G/H$中的三个空间的全局实现{e}_7$和$\mathfrak{h}=\mathfrak{su}(2)\oplus\mathfrak{su}(8)$,其中$\mathfrak{h}={\rm Lie}(h)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信