Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes

IF 1.2 1区 数学 Q1 MATHEMATICS
V. Guedj, C. H. Lu
{"title":"Quasi-plurisubharmonic envelopes 2: Bounds on Monge–Ampère volumes","authors":"V. Guedj, C. H. Lu","doi":"10.14231/AG-2022-021","DOIUrl":null,"url":null,"abstract":"In \\cite{GL21a} we have developed a new approach to $L^{\\infty}$-a priori estimates for degenerate complex Monge-Amp\\`ere equations, when the reference form is closed. This simplifying assumption was used to ensure the constancy of the volumes of Monge-Amp\\`ere measures. We study here the way these volumes stay away from zero and infinity when the reference form is no longer closed. We establish a transcendental version of the Grauert-Riemenschneider conjecture, partially answering conjectures of Demailly-P\\u{a}un \\cite{DP04} and Boucksom-Demailly-P\\u{a}un-Peternell \\cite{BDPP13}. Our approach relies on a fine use of quasi-plurisubharmonic envelopes. The results obtained here will be used in \\cite{GL21b} for solving degenerate complex Monge-Amp\\`ere equations on compact Hermitian varieties.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2022-021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

In \cite{GL21a} we have developed a new approach to $L^{\infty}$-a priori estimates for degenerate complex Monge-Amp\`ere equations, when the reference form is closed. This simplifying assumption was used to ensure the constancy of the volumes of Monge-Amp\`ere measures. We study here the way these volumes stay away from zero and infinity when the reference form is no longer closed. We establish a transcendental version of the Grauert-Riemenschneider conjecture, partially answering conjectures of Demailly-P\u{a}un \cite{DP04} and Boucksom-Demailly-P\u{a}un-Peternell \cite{BDPP13}. Our approach relies on a fine use of quasi-plurisubharmonic envelopes. The results obtained here will be used in \cite{GL21b} for solving degenerate complex Monge-Amp\`ere equations on compact Hermitian varieties.
拟多次谐波包络2:蒙日-安培体积上的界
在{GL21a}中,我们开发了一种新的方法来求解$L^{infty}$——当参考形式闭合时退化复Monge-Amp方程的先验估计。该简化假设用于确保Monge Amp ere测量的体积恒定。我们在这里研究当参考形式不再闭合时,这些体积远离零和无穷大的方式。我们建立了Grauert-Riemenschneider猜想的超越版本,部分回答了Demaily-P\u的猜想{a}un\cite{DP04}和Boucksom-Demaily-P\u{a}un-Peternell\引用{BDPP13}。我们的方法依赖于准多亚谐波包络的精细使用。本文的结果将用于求解紧致Hermitian变种上的退化复Monge-Ampere方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信