Computational Modeling and Energy Absorption Behavior of Thin-Walled Tubes with the Kresling Origami Pattern

IF 1.1 Q3 ENGINEERING, CIVIL
Jiaqiang Li, Yao Chen, Xiaodong Feng, Jian Feng, Pooya Sareh
{"title":"Computational Modeling and Energy Absorption Behavior of Thin-Walled Tubes with the Kresling Origami Pattern","authors":"Jiaqiang Li, Yao Chen, Xiaodong Feng, Jian Feng, Pooya Sareh","doi":"10.20898/j.iass.2021.008","DOIUrl":null,"url":null,"abstract":"Origami structures have been widely used in various engineering fields due to their desirable properties such as geometric transformability and high specific energy absorption. Based on the Kresling origami pattern, this study proposes a type of thin-walled origami tube the structural\n configuration of which is found by a mixed-integer linear programming model. Using finite element analysis, a reasonable configuration of a thin-walled tube with the Kresling pattern is firstly analyzed. Then, the influences of different material properties, the rotation angle of the upper\n and lower sections of the tube unit, and cross-sectional shapes on the energy absorption behavior of the thin-walled tubes under axial compression are evaluated. The results show that the symmetric thin-walled tube with the Kresling pattern is a reasonable choice for energy absorption purposes.\n Compared with thin-walled prismatic tubes, the thin-walled tube with the Kresling pattern substantially reduces the initial peak force and the average crushing force, without significantly reducing its energy absorption capacity; moreover, it enters the plastic energy dissipation stage ahead\n of time, giving it a superior energy absorption performance. Besides, the material properties, rotation angle, and cross-sectional shape have considerable influences on its energy absorption performance. The results provide a basis for the application of the Kresling origami pattern in the\n design of thin-walled energy-absorbingstructures.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2021.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 36

Abstract

Origami structures have been widely used in various engineering fields due to their desirable properties such as geometric transformability and high specific energy absorption. Based on the Kresling origami pattern, this study proposes a type of thin-walled origami tube the structural configuration of which is found by a mixed-integer linear programming model. Using finite element analysis, a reasonable configuration of a thin-walled tube with the Kresling pattern is firstly analyzed. Then, the influences of different material properties, the rotation angle of the upper and lower sections of the tube unit, and cross-sectional shapes on the energy absorption behavior of the thin-walled tubes under axial compression are evaluated. The results show that the symmetric thin-walled tube with the Kresling pattern is a reasonable choice for energy absorption purposes. Compared with thin-walled prismatic tubes, the thin-walled tube with the Kresling pattern substantially reduces the initial peak force and the average crushing force, without significantly reducing its energy absorption capacity; moreover, it enters the plastic energy dissipation stage ahead of time, giving it a superior energy absorption performance. Besides, the material properties, rotation angle, and cross-sectional shape have considerable influences on its energy absorption performance. The results provide a basis for the application of the Kresling origami pattern in the design of thin-walled energy-absorbingstructures.
Kresling折纸图案薄壁管的计算建模和能量吸收行为
折纸结构由于具有几何可变换性和高比能吸收等优良性能,在工程领域得到了广泛的应用。基于Kresling折纸模式,本文提出了一种薄壁折纸管的结构构型,该结构构型采用混合整数线性规划模型求解。首先利用有限元分析方法,对具有Kresling花纹的薄壁管的合理结构进行了分析。在此基础上,分析了不同材料性能、管单元上下段转角和截面形状对轴压下薄壁管吸能性能的影响。结果表明,采用Kresling型对称薄壁管作为吸能材料是一种合理的选择。与棱柱形薄壁管相比,Kresling型薄壁管的初始峰值力和平均破碎力明显降低,但吸能能力没有明显降低;并且提前进入塑性耗能阶段,具有优越的吸能性能。此外,材料性能、旋转角度和截面形状对吸能性能有较大影响。研究结果为Kresling折纸图案在薄壁吸能结构设计中的应用提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
17
期刊介绍: The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信