PDE for the joint law of the pair of a continuous diffusion and its running maximum

Pub Date : 2023-01-06 DOI:10.1017/apr.2022.76
L. Coutin, M. Pontier
{"title":"PDE for the joint law of the pair of a continuous diffusion and its running maximum","authors":"L. Coutin, M. Pontier","doi":"10.1017/apr.2022.76","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:italic>X</jats:italic> be a <jats:italic>d</jats:italic>-dimensional diffusion and <jats:italic>M</jats:italic> the running supremum of its first component. In this paper, we show that for any <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867822000763_inline1.png\" />\n\t\t<jats:tex-math>\n$t>0,$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> the density (with respect to the <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867822000763_inline2.png\" />\n\t\t<jats:tex-math>\n$(d+1)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-dimensional Lebesgue measure) of the pair <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867822000763_inline3.png\" />\n\t\t<jats:tex-math>\n$\\big(M_t,X_t\\big)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is a weak solution of a Fokker–Planck partial differential equation on the closed set <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867822000763_inline4.png\" />\n\t\t<jats:tex-math>\n$\\big\\{(m,x)\\in \\mathbb{R}^{d+1},\\,{m\\geq x^1}\\big\\},$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> using an integral expansion of this density.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let X be a d-dimensional diffusion and M the running supremum of its first component. In this paper, we show that for any $t>0,$ the density (with respect to the $(d+1)$ -dimensional Lebesgue measure) of the pair $\big(M_t,X_t\big)$ is a weak solution of a Fokker–Planck partial differential equation on the closed set $\big\{(m,x)\in \mathbb{R}^{d+1},\,{m\geq x^1}\big\},$ using an integral expansion of this density.
分享
查看原文
PDE为连续扩散对及其运行最大值的联合律
设X是d维扩散,M是其第一个分量的运行上确界。在本文中,我们证明了对于任何$t>0,$对$\big(M_t,X_t\big)$的密度(相对于$(d+1)$维Lebesgue测度)是闭集$\big上的Fokker–Planck偏微分方程的弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信