Balanced and Unbalanced: Physical Proofs of the Mean Inequalities

Q4 Mathematics
Tom Edgar
{"title":"Balanced and Unbalanced: Physical Proofs of the Mean Inequalities","authors":"Tom Edgar","doi":"10.1080/0025570X.2023.2167431","DOIUrl":null,"url":null,"abstract":"Summary We provide two visual proofs of the two-variable harmonic mean-geometric mean-arithmetic mean-quadratic mean inequalities: one using a center of mass model and one using moments of mass.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"96 1","pages":"60 - 65"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2167431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Summary We provide two visual proofs of the two-variable harmonic mean-geometric mean-arithmetic mean-quadratic mean inequalities: one using a center of mass model and one using moments of mass.
平衡和不平衡:均值不等式的物理证明
我们提供了两个变量调和平均-几何平均-算术平均-二次平均不等式的视觉证明:一个使用质心模型,一个使用质量矩模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信