Development of non polynomial spline and New B-spline with application to solution of Klein-Gordon equation

IF 1.1 Q2 MATHEMATICS, APPLIED
Homa Zadvan, J. Rashidinia
{"title":"Development of non polynomial spline and New B-spline with application to solution of Klein-Gordon equation","authors":"Homa Zadvan, J. Rashidinia","doi":"10.22034/CMDE.2020.27847.1377","DOIUrl":null,"url":null,"abstract":"In this paper we develop a non polynomial cubic spline functions which we called ”TS spline”, based on trigonometric functions. The convergence analysis of this spline is investigated in details. The definition of B-spline basis function for TS spline is extended and ”TS B-spline” is introduced. This paper attempts to develop collocation method based on this B-spline for the numerical solution of the nonlinear Klein-Gordon equation. The convergence analysis of this approach is discussed, the second order of convergence is proved consequently. The proposed method is applied on some test examples and the numerical results are compared with those already available in literature. Observed errors in the solutions show the efficiency and numerical applicability of the proposed method.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.27847.1377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we develop a non polynomial cubic spline functions which we called ”TS spline”, based on trigonometric functions. The convergence analysis of this spline is investigated in details. The definition of B-spline basis function for TS spline is extended and ”TS B-spline” is introduced. This paper attempts to develop collocation method based on this B-spline for the numerical solution of the nonlinear Klein-Gordon equation. The convergence analysis of this approach is discussed, the second order of convergence is proved consequently. The proposed method is applied on some test examples and the numerical results are compared with those already available in literature. Observed errors in the solutions show the efficiency and numerical applicability of the proposed method.
非多项式样条和新B样条的发展及其在Klein-Gordon方程求解中的应用
本文在三角函数的基础上发展了一种非多项式三次样条函数,称之为“TS样条”。详细研究了该样条曲线的收敛性分析。推广了TS样条的B样条基函数的定义,引入了“TS B样条”。本文试图发展基于该B样条的配点法来求解非线性Klein-Gordon方程。讨论了该方法的收敛性分析,从而证明了二阶收敛性。将所提出的方法应用于一些试验实例,并将数值结果与文献中已有的结果进行了比较。在解中观察到的误差表明了所提出的方法的有效性和数值适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信