{"title":"Extremal eigenvalues of critical Erdős–Rényi graphs","authors":"Johannes Alt, Raphael Ducatez, A. Knowles","doi":"10.1214/20-AOP1483","DOIUrl":null,"url":null,"abstract":"We complete the analysis of the extremal eigenvalues of the adjacency matrix A of the Erdős-Rényi graph G(N, d/N) in the critical regime d log N of the transition uncovered in [2, 3], where the regimes d log N and d log N were studied. We establish a one-to-one correspondence between vertices of degree at least 2d and nontrivial (excluding the trivial top eigenvalue) eigenvalues of A/ √ d outside of the asymptotic bulk [−2, 2]. This correspondence implies that the transition characterized by the appearance of the eigenvalues outside of the asymptotic bulk takes place at the critical value d = d∗ = 1 log 4−1 log N . For d < d∗ we obtain rigidity bounds on the locations of all eigenvalues outside the interval [−2, 2], and for d > d∗ we show that no such eigenvalues exist. All of our estimates are quantitative with polynomial error probabilities. Our proof is based on a tridiagonal representation of the adjacency matrix and on a detailed analysis of the geometry of the neighbourhood of the large degree vertices. An important ingredient in our estimates is a matrix inequality obtained via the associated nonbacktracking matrix and an Ihara-Bass formula [3]. Our argument also applies to sparse Wigner matrices, defined as the Hadamard product of A and a Wigner matrix, in which case the role of the degrees is replaced by the squares of the `2-norms of the rows.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-AOP1483","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 32
Abstract
We complete the analysis of the extremal eigenvalues of the adjacency matrix A of the Erdős-Rényi graph G(N, d/N) in the critical regime d log N of the transition uncovered in [2, 3], where the regimes d log N and d log N were studied. We establish a one-to-one correspondence between vertices of degree at least 2d and nontrivial (excluding the trivial top eigenvalue) eigenvalues of A/ √ d outside of the asymptotic bulk [−2, 2]. This correspondence implies that the transition characterized by the appearance of the eigenvalues outside of the asymptotic bulk takes place at the critical value d = d∗ = 1 log 4−1 log N . For d < d∗ we obtain rigidity bounds on the locations of all eigenvalues outside the interval [−2, 2], and for d > d∗ we show that no such eigenvalues exist. All of our estimates are quantitative with polynomial error probabilities. Our proof is based on a tridiagonal representation of the adjacency matrix and on a detailed analysis of the geometry of the neighbourhood of the large degree vertices. An important ingredient in our estimates is a matrix inequality obtained via the associated nonbacktracking matrix and an Ihara-Bass formula [3]. Our argument also applies to sparse Wigner matrices, defined as the Hadamard product of A and a Wigner matrix, in which case the role of the degrees is replaced by the squares of the `2-norms of the rows.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.