Estimating glass transition temperature and related dynamics of molecular glass formers combining artificial neural networks and disordered systems theory

Q1 Physics and Astronomy
Claudia Borredon , Luis A. Miccio , Anh D. Phan , Gustavo A. Schwartz
{"title":"Estimating glass transition temperature and related dynamics of molecular glass formers combining artificial neural networks and disordered systems theory","authors":"Claudia Borredon ,&nbsp;Luis A. Miccio ,&nbsp;Anh D. Phan ,&nbsp;Gustavo A. Schwartz","doi":"10.1016/j.nocx.2022.100106","DOIUrl":null,"url":null,"abstract":"<div><p>Glass transition temperature and related dynamics play an essential role in amorphous materials research since many of their properties and functionalities depend on molecular mobility. However, the temperature dependence of the structural relaxation time for a given glass former is only experimentally accessible after synthesizing it, implying a time-consuming and costly process. In this work, we propose combining artificial neural networks and disordered systems theory to estimate the glass transition temperature and the temperature dependence of the main relaxation time based on the knowledge of the molecule's chemical structure. This approach provides a way to assess the dynamics of molecular glass formers, with reasonable accuracy, even before synthesizing them. We expect this methodology to boost industrial development, save time and resources, and accelerate the scientific understanding of structure-properties relationships.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"15 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590159122000267/pdfft?md5=66e50df27cd10a129e8c7a27f18dbb7c&pid=1-s2.0-S2590159122000267-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Crystalline Solids: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590159122000267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Glass transition temperature and related dynamics play an essential role in amorphous materials research since many of their properties and functionalities depend on molecular mobility. However, the temperature dependence of the structural relaxation time for a given glass former is only experimentally accessible after synthesizing it, implying a time-consuming and costly process. In this work, we propose combining artificial neural networks and disordered systems theory to estimate the glass transition temperature and the temperature dependence of the main relaxation time based on the knowledge of the molecule's chemical structure. This approach provides a way to assess the dynamics of molecular glass formers, with reasonable accuracy, even before synthesizing them. We expect this methodology to boost industrial development, save time and resources, and accelerate the scientific understanding of structure-properties relationships.

Abstract Image

结合人工神经网络和无序系统理论估算分子玻璃形成剂的玻璃化转变温度和相关动力学
由于非晶材料的许多性质和功能取决于分子迁移率,因此玻璃化转变温度和相关动力学在非晶材料的研究中起着至关重要的作用。然而,对于给定的玻璃前体,结构弛豫时间的温度依赖关系只能在合成后通过实验获得,这意味着一个耗时和昂贵的过程。在这项工作中,我们提出结合人工神经网络和无序系统理论,在分子化学结构的基础上估计玻璃化转变温度和主弛豫时间的温度依赖性。这种方法提供了一种评估分子玻璃形成物动力学的方法,具有合理的准确性,甚至在合成它们之前。我们期望这种方法能够促进工业发展,节省时间和资源,并加速对结构-性质关系的科学理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Non-Crystalline Solids: X
Journal of Non-Crystalline Solids: X Materials Science-Materials Chemistry
CiteScore
3.20
自引率
0.00%
发文量
50
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信